精英家教网 > 初中数学 > 题目详情
(2002•达州)已知:如图,正方形ABCD中,O是AC与BD的交点,∠DAC的平分线AP交CD于点P,∠BDC的平分线DQ交AC于点Q.求证:

【答案】分析:欲证,可通过证明△ACP∽△BCQ得出结论.
解答:证明:∵ABCD是正方形,
∴BD=AC,CD=BC,∠ACP=∠BCQ=45°.
∵∠DAC的平分线为AP,∠BDC的平分线为DQ,
∴∠PAC=∠CBQ=22.5°.
∴△ACP∽△BCQ.


点评:此题主要考查相似三角形的判定以及正方形的一些基本性质.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2002•达州)已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2002•达州)已知:如图,两个以O为圆心的同心圆,AB是大圆的直径,弦BC切小圆于点D,CE⊥AB,垂足为E,大圆的直径为25,小圆的直径为15米.求AE的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2002•达州)已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2002•达州)已知:如图,正方形ABCD中,O是AC与BD的交点,∠DAC的平分线AP交CD于点P,∠BDC的平分线DQ交AC于点Q.求证:

查看答案和解析>>

同步练习册答案