精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.
(1)y=x2-2x-3.(2),(3)

试题分析:(1)将A(-1,0)、B(4,5)分别代入y=x2+bx+c求出b和c的值即可;
(2)过点O作OH⊥AB,垂足为H,根据勾股定理可求出AB的长,进而得到:在Rt△BOH中,tan∠ABO= .
(3)设点M的坐标为(x,x2-2x-3),点N的坐标为(x,x+1),在分两种情况:当点M在点N的上方时和当点M在点N的下方时,则四边形NMCB是平行四边形讨论求出符合题意的点M的横坐标即可.
试题解析::(1)将A(-1,0)、B(4,5)分别代入y=x2+bx+c,得

解得b=-2,c=-3.
∴抛物线的解析式:y=x2-2x-3.
(2)在Rt△BOC中,OC=4,BC=5.
在Rt△ACB中,AC=AO+OC=1+4=5,
∴AC=BC.
∴∠BAC=45°,AB=
如图1,过点O作OH⊥AB,垂足为H.

在Rt△AOH中,OA=1,
∴AH=OH=OA×sin45°=1×=
∴BH=AB-AH=
在Rt△BOH中,tan∠ABO=
(3)直线AB的解析式为:y=x+1.
设点M的坐标为(x,x2-2x-3),
点N的坐标为(x,x+1),
如图2,当点M在点N的上方时,

则四边形MNCB是平行四边形,MN=BC=5.
由MN=(x2-2x-3)-(x+1)=x2-2x-3-x-1=x2-3x-4,
解方程x2-3x-4=5,得x=或x=
②如图3,当点M在点N的下方时,则四边形NMCB是平行四边形,NM=BC=5.

由MN=(x+1)-(x2-2x-3)=x+1-x2+2x+3=-x2+3x+4,
解方程-x2+3x+4=5,得x=或x=
所以符合题意的点M有4个,其横坐标分别为:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为   ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为   ,此时AE与BF的数量关系是   
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线轴交于点A,B,与y轴交于点C,其中点B的坐标为.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种上屏每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图像如图所示.
销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
销售单价在什么范围时,该种商品每天的销售利润不低于16元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣),对称轴是直线x=﹣.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )
A.k<-3B.k>-3C.k<3D.k>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知二次函数的图象与轴相交于点,顶点为,点在这个二次函数图象的对称轴上.若四边形是一个边长为2且有一个内角为的菱形.求此二次函数的表达式.

查看答案和解析>>

同步练习册答案