精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b与反比例函数y= 的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.

【答案】
(1)解:把A(1,4)代入y= ,得:m=4,

∴反比例函数的解析式为y=


(2)解:把B(4,n)代入y= ,得:n=1,

∴B(4,1),

把A(1,4)、(4,1)代入y=kx+b,得:

解得:

∴一次函数的解析式为y=﹣x+5


(3)解:作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,

∵B(4,1),

∴B′(4,﹣1),

设直线AB′的解析式为y=mx+n,

,解得

∴直线AB′的解析式为y=﹣ x+

令y=0,得﹣ x+ =0,

解得x=

∴点P的坐标为( ,0).


【解析】(1)将点A(1,4)代入反比例函数解析式可得其解析式;(2)先根据反比例函数解析式求得点B坐标,再由A、B坐标可得直线解析式;(3)作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点即可.
【考点精析】解答此题的关键在于理解轴对称-最短路线问题的相关知识,掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)请你数一数,图中有多少个小于平角的角;

(2)求出∠BOD的度数;

(3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC C 90ACBCD BC 上一点,且到 AB 两点的距离相等.

(1)用直尺和圆规,作出点 D 的位置(不写作法,保留作图痕迹);

(2)连结 AD,若 B 36 ,求∠CAD 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G.若BG=4,则CEF的面积是(

A. B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一楼房AB后有一假山,其坡度为i=1: ,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABO的顶点A是双曲线y1与直线y2=-x-(k+1)在第二象限的交点.ABx轴于B,且SABO

(1)求这两个函数的解析式;

(2)求AOC的面积.

(3)直接写出使y1>y2成立的x的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某月的月历上圈出了相邻的三个数a、b、c,并求出了它们的和为39,这三个数在月历中的排布不可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把对角线互相垂直的四边形叫做垂美四边形.

(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.

(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC ,AD之间的数量关系,写出证明过程。

(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE, 已知AC=,BC=1 求GE的长.

查看答案和解析>>

同步练习册答案