精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=10,BC=8,E为AD边上的一点,沿CE将△CDE对折,点D正好落在AB边上的点F处,则cos∠CEF=
5
5
5
5
分析:根据矩形的性质得DC=AB=10,AD=BC=8,∠A=∠B=90°,再根据折叠的性质得CF=CD=10,∠CEF=∠DEC,ED=EF;在Rt△BFC中利用勾股定理计算出BF=6,
则AF=4,设DE=x,则AE=8-x,EF=x,然后在Rt△AEF中利用勾股定理得到关于x的方程,解方程得到x的值,接着再利用勾股定理计算出CE,再根据余弦的定义求解.
解答:解:∵四边形ABCD为矩形,
∴DC=AB=10,AD=BC=8,∠A=∠B=90°,
∵沿CE将△CDE对折,点D正好落在AB边上的点F处,
∴CF=CD=10,∠CEF=∠DEC,ED=EF,
在Rt△BFC中,BC=8,CF=10,
∴BF=
CF2-BC2
=6,
∴AF=AB-BF=4,
设DE=x,则AE=8-x,EF=x,
在Rt△AEF中,AE2+AF2=EF2,即(8-x)2+42=x2,解得x=5,
在Rt△DEC中,DE=5,DC=10,
∴EC=
DE2+DC2
=5
5

∴cos∠DEC=
DE
EC
=
5
5
5
=
5
5

即cos∠CEF=
DE
EC
=
5
5
5
=
5
5

故答案为
5
5
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和余弦的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案