精英家教网 > 初中数学 > 题目详情
精英家教网如图,等腰△ABC的腰长是5cm,底边长是6cm,P是底边BC上任意一点,PD⊥AB,PE⊥AC,垂足分别是D,E,那么PD+PE=
 
cm.
分析:作出底边上的高AF,连接AP,分等腰三角形为△APB和△APC,根据三角形的面积不变可求得PD+PE的值.
解答:精英家教网解:连接AP,作AF⊥BC于点F,则BF=
1
2
BC=3.
在Rt△ABF中,AF=
AB2-BF2
=4.
∵PD⊥AB,PE⊥AC,AF⊥BC,
∴S△ABC=S△ABP+S△APC
即:
1
2
BC•AF=
1
2
AB•PD+
1
2
AC•PE.
∵AB=AC=5,
∴PD+PE=
24
5
cm.
点评:本题利用了等腰三角形的性质:两腰相等,及勾股定理,面积法求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等腰△ABC的腰长为2
2
,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B
 
、C
 
、A
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC的周长为27,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC的顶角为120°,腰长为10,则底边BC上的中线AD长为
5
5

查看答案和解析>>

同步练习册答案