精英家教网 > 初中数学 > 题目详情
如图1,直线AB的解析式为y=kx-6,且分式
k-2k-3
=0,以A点为顶点在第四象限做等腰直角三角形△ABC.

(1)求A点和C点的坐标.
(2)在第四象限是否存在一点P,使△PBA≌CAB?若存在,求出P点坐标;若不存在,说明理由.
(3)如图2,Q为y轴负半轴上一个动点,当Q点向y轴负半轴向下运动时,以Q为顶点,在第三象限作等腰直角三角形△ADQ,过D作DE⊥x轴于E点,下列两个结论:①OQ-DE的值不变,②OQ+DE的值不变.其中有且只有一个结论是正确的,请你判断哪一个结论正确,说出你的理由并求出其值.
分析:(1)求出k,分别把x=0和y=0代入一次函数的解析式,求出A、B的坐标,求出OA、OB值,证△OBA≌△EAC,推出CE=OA=3,AE=OB=6,即可求出C的坐标;
(2)过P作PQ⊥y轴于Q,证出△PQB≌△BOA,推出BQ=OA=3,PQ=OB=6,求出OQ=9,即可得出P的坐标;
(3)过D作DF⊥y轴于F,求出∠FDQ=∠FQA,根据AAS证△DFQ≌△AOQ,推出FQ=AO=3,推出四边形DEOF是矩形,得到DE=OF,即可求出OQ-DE=FQ=3,得出答案即可.
解答:(1)解:∵
k-2
k-3
=0,
∴k-2=0,
∴k=2,
∴y=2x-6,
当x=0时,y=-6,
当y=0时,x=3,
∴A(3,0),B(0,-6),
∴OA=3,OB=6,
过C作CE⊥x轴于E,
则∠AEC=90°=∠AOB,
∵∠BAC=90°,
∴∠OAB+∠EAC=90°,∠OAB+∠OBA=90°,
∴∠OBA=∠EAC,
∵∠AEC=∠AOB=90°,AB=AC,
∴△OBA≌△EAC,
∴CE=OA=3,AE=OB=6,
∴OE=3+6=9,
∴C(9,-3),
故A点和C点的坐标分别为:A(3,0),C(9,-3).

(2)解:在第四象限内存在一点P,使△PBA≌CAB,
过P作PQ⊥y轴于Q,
∵与(1)中证明△OBA≌△EAC类似证出△PQB≌△BOA,
BQ=OA=3,PQ=OB=6,OQ=6+3=9,
∴P的坐标是(6,-9),
∴在第四象限内存在一点P,使△PBA≌CAB,P的坐标是(6,-9).

(3)解:OQ-DE的值不变,
理由是:过D作DF⊥y轴于F,
∵∠DFQ=∠DQA=90°,
∴∠FDQ+∠FQD=90°,∠FQD+∠FQA=90°,
∴∠FDQ=∠FQA,
∵在△DFQ和△AOQ中
∠DFQ=∠AOQ
∠FDQ=∠AQO
QA=DQ

∴△DFQ≌△AOQ,
∴FQ=AO=3,
∵∠EOF=∠DFQ=∠DEO=90°,
∴四边形DEOF是矩形,
∴DE=OF,
∴OQ-DE=FQ=3,
即OQ-DE的值不变,OQ-DE=3.
点评:本题考查了全等三角形的性质和判定,三角形的内角和定理,一次函数上点的坐标特征,能综合运用性质进行推理和计算是解此题的关键,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、完成下列证明:
(1)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°
垂直定义

∴EF∥AD
同位角相等,两直线平行

∴∠1=∠BAD
两直线平行,同位角相等

又∵∠1=∠2(已知)
∠2=∠BAD
(等量代换)
∴DG∥BA
内错角相等,两直线平行


(2)如图,已知AB=AD,AC=AE,∠1=∠2,请说明BC=DE的理由.
解:∵∠1=∠2
∴∠1+
∠EAC
=∠2+
∠EAC
等式性质

即∠BAC=∠DAE
在△ABC和△ADE中
AB=
AD
(已知)
∠BAC=∠DAE(已证)
AC
=AE(已知)
∴△ABC≌△ADE(
SAS

∴BC=DE(
全等三角形的对应边相等

查看答案和解析>>

科目:初中数学 来源: 题型:

如下面第一幅图,点A的坐标为(-1,1)
(1)那么点B,点C的坐标分别为
 

(2)若一个关于x,y的二元一次方程,有两个解是
x=点A的横坐标
y=点A的纵坐标
x=点B的横坐标
y=点B的纵坐标
请写出这个二元一次方程,并检验说明点C的坐标值是否是它的解.
(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x的值作为点D的横坐标,y的值作为点D的纵坐标,在下面第一幅图中描出点D;
(4)在下面第一幅图中作直线AB与直线AC,则直线AB与直线AC的位置关系
 
,点D与直线AB的位置关系是
 

(5)若把直线AB叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组
x+y=4
x-y=-2
中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知AB∥DE,∠BAE=∠EDC,AD⊥AE,垂足为A,请在下划线内补全求∠ADC的度数的解题过程或依据.
解:∵AB∥DE (已知),
∴∠BAE=
∠AED
两直线平行,内错角相等
).
∵∠BAE=∠EDC(已知),
∠AED=∠EDC
(等量代换).
AE∥CD
 (
内错角相等,两直线平行
 ).
∠AEC=∠ECD
(两直线平行,同旁内角互补).
又∵AD⊥AE (已知),
∴∠EA D=
90°
(垂直的概念).
∴∠ADC=
90°
  (
两直线平行,同旁内角互补
).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,且∠A=50°,∠F=120°,DG平分∠ADF,求∠CDG的度数.
解:∵AB∥CD
∴∠A=∠ADC
两直线平行,内错角相等
两直线平行,内错角相等

又∵∠A=50°
∴∠
ADC
ADC
=50°
∵CD∥EF
∴∠F+∠
CDF
CDF
=180°(两直线平行,同旁内角互补 )
又∵∠F=120°
∴∠CDF=
60°
60°

∴∠ADF=
110°
110°

∵DG平分∠ADF
∴∠ADG=
12
ADF
ADF
=
55
55
°
角平分线的定义
角平分线的定义

∴∠CDG=∠ADG-∠
ADC
ADC
=
5
5
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

说理填空:如图,已知AB∥CD,GH平分∠AGM,MN平分∠CMG,请说明GH⊥MN的理由.
解:因为AB∥CD(已知),
所以∠AGF+
∠CHE
∠CHE
=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
 ),
因为GH平分∠AGF,MN平分∠CMG(
已知
已知
 ),
所以∠1=
1
2
∠AGF,∠2=
1
2
∠CMG(
角平分线的定义
角平分线的定义
),
得∠1+∠2=
1
2
(∠AGF+∠CMG)=
90°
90°

所以GH⊥MN(
垂直的定义
垂直的定义
).
根据已知条件和所得结论请总结出一个规律:
两直线平行,同旁内角的角平分线互相垂直
两直线平行,同旁内角的角平分线互相垂直

查看答案和解析>>

同步练习册答案