精英家教网 > 初中数学 > 题目详情

已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.

(1)求抛物线的解析式;

(2)当BQ=AP时,求t的值;

(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由.


解:(1)设抛物线的解析式为y=ax2+bx+c,

∵抛物线经过A(﹣2,0),B(0,2),C(,0)三点,

解得

∴y=﹣x2x+2.

(2)∵AQ⊥PB,BO⊥AP,

∴∠AOQ=∠BOP=90°,∠PAQ=∠PBO,

∵AO=BO=2,

∴△AOQ≌△BOP,

∴OQ=OP=t.

①如图1,当t≤2时,点Q在点B下方,此时BQ=2﹣t,AP=2+t.

∵BQ=AP,

∴2﹣t=(2+t),

∴t=

②如图2,当t>2时,点Q在点B上方,此时BQ=t﹣2,AP=2+t.

∵BQ=AP,

∴t﹣2=(2+t),

∴t=6.

综上所述,t=或6时,BQ=AP.

(3)当t=﹣1时,抛物线上存在点M(1,1);当t=3+3时,抛物线上存在点M(﹣3,﹣3).

分析如下:

∵AQ⊥BP,

∴∠QAO+∠BPO=90°,

∵∠QAO+∠AQO=90°,

∴∠AQO=∠BPO.

在△AOQ和△BOP中,

∴△AOQ≌△BOP,

∴OP=OQ,

∴△OPQ为等腰直角三角形,

∵△MPQ为等边三角形,则M点必在PQ的垂直平分线上,

∵直线y=x垂直平分PQ,

∴M在y=x上,设M(x,y),

解得  或

∴M点可能为(1,1)或(﹣3,﹣3).

①如图3,当M的坐标为(1,1)时,作MD⊥x轴于D,

则有PD=|1﹣t|,MP2=1+|1﹣t|2=t2﹣2t+2,PQ2=2t2

∵△MPQ为等边三角形,

∴MP=PQ,

∴t2+2t﹣2=0,

∴t=﹣1+,t=﹣1﹣(负值舍去).

②如图4,当M的坐标为(﹣3,﹣3)时,作ME⊥x轴于E,

则有PE=3+t,ME=3,

∴MP2=32+(3+t)2=t2+6t+18,PQ2=2t2

∵△MPQ为等边三角形,

∴MP=PQ,

∴t2﹣6t﹣18=0,

∴t=3+3,t=3﹣3(负值舍去).

综上所述,当t=﹣1+时,抛物线上存在点M(1,1),或当t=3+3时,抛物线上存在点M(﹣3,﹣3),使得△MPQ为等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


化简:的结果是(     )

(A)      (B)       (C)      (D)

查看答案和解析>>

科目:初中数学 来源: 题型:


某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:


纸箱里有双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图中几何体的俯视图是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


(1﹣)++()﹣1

查看答案和解析>>

同步练习册答案