精英家教网 > 初中数学 > 题目详情

如图,⊙O1与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙O1与⊙O2的半径之比为


  1. A.
    2:5
  2. B.
    1:2
  3. C.
    1:3
  4. D.
    2:3
C
分析:添加辅助线,要探求两半径之间的关系,必须求出∠COlO2(或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.
解答:解:如图,设⊙O1、⊙O2的半径分别为r、R,
连O1C,O1O2,O2D,O1B,过O1作O1E⊥O2D于E,由AB∥CD,CO1⊥CD,得CO1⊥AB,
∵O1B=O1A,
∴∠BO1F=AO1F,
∴∠CO1B=∠CO1A,又有对称性知∠CO1A=∠BO1A=∠AO1B=120°.
故∠O2O1E=120°-90°=30°.
∴R+r=2(R-r),
则R=3r,
故选C.
点评:本题考查了勾股定理和切线的性质,当两圆外切时,常过小圆的圆心作大圆半径的垂线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知:如图,⊙O1与⊙O2外切于点P,直线AB过点P交⊙O1于A,交⊙O2于B,点C、D分别为⊙O1、⊙O2上的点,且∠ACP=65°,则∠BDP=
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
34
,求⊙O2的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1与⊙O2相交于C、D两点,⊙O1的割线PAB与DC的延长线交于点P,PN与⊙O2相切于点N,若PB=10,AB=6,则PN=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:⊙O1与⊙O2相交于AB两点,过点A、B的直线分别与⊙O1交于C、E,与⊙O2交于D、F,连接CE、DF.
求证:CE∥DF.

查看答案和解析>>

同步练习册答案