精英家教网 > 初中数学 > 题目详情
如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为
 
精英家教网
分析:过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角,在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2
3
,由旋转的性质可知BD=BC=2
3
,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=
1
2
×BC×DF.
解答:精英家教网解:过D点作DF⊥BE的垂线,垂足为F,
∵∠ABC=30°,∠ABE=150°
∴∠CBE=∠ABC+∠ABE=180°,
∵在Rt△ABC中,AB=4,∠ABC=30°,
∴AC=2,BC=2
3

由旋转的性质可知BD=BC=2
3
,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2
3
×2,
解得DF=
3

S△BCD=
1
2
×BC×DF=
1
2
×2
3
×
3
=3cm2
故答案为:3cm2
点评:本题考查了旋转的性质,解直角三角形的方法.关键是围绕求△BCD的面积确定底和高的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MN精英家教网C,△ABC的面积为S△ABC
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=
14
S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若△BCD的面积为3cm2,则AC=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•蕲春县模拟)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′精英家教网交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD=x,△BDE的面积为S.
(1)当α=30°时,求x的值.
(2)求S与x的函数关系式,并写出x的取值范围;
(3)以点E为圆心,BE为半径作⊙E,当S=
14
S△ABC
时,判断⊙E与A′C的位置关系,并求相应的tanα值.

查看答案和解析>>

同步练习册答案