分析 (1)根据∠ADB+∠CEG=180°,∠ADB+∠ADE=180°,可得∠ADE=∠CEG,进而判定AD∥EF;
(2)先推出HD∥AC,根据平行线的性质得出∠H=∠CGH,再根据平行线的性质得到∠CAD=∠CGH,∠BAD=∠F,进而得到∠H=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得到∠F与∠H相等.
解答 解:(1)AD∥EF.
理由:∵∠ADB+∠CEG=180°,∠ADB+∠ADE=180°,
∴∠ADE=∠CEG,
∴AD∥EF;
(2)∠F=∠H,
理由:∵∠EDH=∠C,
∴HD∥AC,
∴∠H=∠CGH,
∵AD∥EF,
∴∠CAD=∠CGH,∠BAD=∠F,
∴∠H=∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠H=∠F.
点评 本题考查了平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com