精英家教网 > 初中数学 > 题目详情
如图,PA、PB是⊙O的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于______.
(1)如图(1),连接OA、OB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
又∵∠ACB=
1
2
∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠ACB=60°;

(2)如图(2),连接OA、OB,作圆周角∠ADB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
∴∠ADB=
1
2
∠AOB=60°,
∴∠ACB=180°-∠ADB=120°;
故答案为:60°或120°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)证明:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是(  )
A.2B.1C.2-
2
2
D.2-
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为______(度).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,点D是
BC
的中点,PD切⊙O于点D.
(1)求证:DP⊥AP;
(2)若PD=12,PC=8,求⊙O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图AB是⊙O的直径,从⊙O外一点C引⊙O切线CD,D是切点,再从C点引割线交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
1
2
EF,则CG=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知PA、PB切⊙O于A、B两点.连接AB且PA、PB的长分别是方程x2-2mx+3=0的两根,AB=m,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有(  )个.
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△ABC中,∠ACB=90°,点O在AC上,以O为圆心、OC为半径的圆与AB相切于点D,交AC于点E.
(1)求证:DEOB;
(2)若⊙O的半径为2,BC=4,求AD的长.

查看答案和解析>>

同步练习册答案