精英家教网 > 初中数学 > 题目详情

【题目】小王电子产品专柜以20/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下

销售数据(x)

售价()

日销售量()

1x35

x+30

1002x

35x60

70

1002x

(1)若试销阶段每天的利润为W元,求出Wx的函数关系式;

(2)请问在试销阶段的哪一天销售利润W可以达到最大值?最大值为多少?

【答案】(1)见解析;(2)在试销阶段的第20天时W最大,最大值为1800元.

【解析】

1)利用总利润=单件利润×销量写出函数关系式即可;

2)配方后确定两个最值,取最大的即可.

解:(1)①当1≤x35时,W1(x+3020)(1002x)

W1=﹣2(x20)2+1800

②当35≤2x≤26时,W2(7020)(1002x)

W2=﹣100x+5000

Wx之间的函数关系式为:

W

(2)W1=﹣2(x20)2+1800(1≤x35)

∴在试销的第一阶段,在第20天时,利润最大为1800元,

W2=﹣100x+5000(35≤x≤60)

∴在试销的第二阶段,在第35天时,销售利润最大为1500元,

答:在试销阶段的第20天时W最大,最大值为1800元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】受“新冠”疫情的影响,某销售商在网上销售两种型号的“手写板”,获利颇丰.已知型,型手写板进价、售价和每日销量如表格所示:

进价(元/个)

售价(元/个)

销量(个/日)

根据市场行情,该销售商对型手写板降价销售,同时对型手写板提高售价,此时发现型手写板每降低元就可多卖个,型手写板每提高元就少卖个,要保持每天销售总量不变,设其中型手写板每天多销售个,每天总获利的利润为

1)求之间的函数关系式并写出的取值范围;

2)要使每天的利润不低于元,直接写出的取值范围;

3)该销售商决定每销售一个型手写板,就捐元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有四个外观与质地完全相同的小球,小球上分别标有数字.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.

1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.

2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.

抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中 事件,小悦被抽中 事件(不可能必然随机”);第一次抽取卡片小悦被抽中的概率为

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:点PABC内部或边上的点(顶点除外),在PABPBCPCA中,若至少有一个三角形与ABC相似,则称点PABC的自相似点.

例如:图1PABC的内部,PBC=APCB=ABCBCP∽△ABC,故PABC的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,M曲线C上的任意一点,点Nx轴正半轴上的任意一点.

(1) 如图2,点P是OM上一点,ONP=M, 试说明点P是MON的自相似点; M的坐标是N的坐标是时,求点P 的坐标;

(2) 如图3,当M的坐标是N的坐标是时,求MON的自相似点的坐标;

(3) 是否存在点M和点N,使MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点A11),B31),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为(  )

A. (﹣20183B. (﹣2018,﹣3

C. (﹣20163D. (﹣2016,﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买株茶花与株月季的费用相同,购买株茶花与株月季共需.

1)求茶花和月季的销售单价;

2)该景区至少需要茶花月季共株,要求茶花比月季多株,但订购两种花的总费用不超过元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC中,点D在边AC上,且AB2ADAC

1)如图1.求证:∠ABD=∠C

2)如图2.在边BC上截取BEBDEDBA的延长线交于点F,求证:.

3)在 2)的条件下,若AD4CD5cosBAC,试直接写出FBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线的顶点为A02),与x轴交于B(﹣20)、C20)两点.

1)求抛物线的函数表达式;

2)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ2OP.若点Q正好落在该抛物线上,求点P的坐标;

3)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQmOPm为常数);

证明点Q一定落在抛物线上;

设有一个边长为m+1的正方形(其中m3),它的一组对边垂直于x轴,另一组对边垂直于y轴,并且该正方形四个顶点正好落在抛物线组成的封闭图形上,求线段PQ被该正方形的两条边截得线段长最大时点Q的坐标.

查看答案和解析>>

同步练习册答案