精英家教网 > 初中数学 > 题目详情
18.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为(  )
A.30°B.45°C.60°D.75°

分析 先求出∠D的度数,再由圆周角定理即可得出结论.

解答 解:∵BD是⊙O的直径,∠CBD=30°,
∴∠BCD=90°,
∴∠D=90°-30°=60°,
∴∠A=∠D=60°.
故选C.

点评 本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016~2017学年安徽省芜湖市九年级下学期第一次模拟考试数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是( )

A.a>0 B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0 D.当x<1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:△DEC的一个顶点D在△ABC内部,且∠CAD+∠CBD=90°.
(1)如图1,若△ABC与△DEC均为等腰直角三角形,且∠ABC=∠DEC=90°,连接BE,求证:△ADC∽△BEC.
(2)如图2,若∠ABC=∠DEC=90°,$\frac{AB}{BC}$=$\frac{DE}{EC}$=n,BD=1,AD=2,CD=3,求n的值;
(3)如图3,若AB=BC,DE=EC,且∠ABC=∠DEC=135°,BD=a,AD=b,CD=c,请直接写出a、b、c三者满足的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.矩形ABCD中,AB=12,BC=9,点M从点A出发,沿AB方向在线段AB上以2个单位长度每秒的速度运动,以点M为圆心,MA长为半径画圆,过点M作NM⊥AB,交⊙M于点N,设运动时间为t秒.
(1)如图1,当⊙M与BD相切时,
①求t的值;
②求△CDN的面积.
(2)如图2,若点N在矩形ABCD内部,且当∠CND=90°时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,抛物线C1:y1=ax2+2ax(a>0)与x轴交于点A,顶点为点P.
(1)直接写出抛物线C1的对称轴是直线x=-1,用含a的代数式表示顶点P的坐标(-1,-a);
(2)把抛物线C1绕点M(m,0)旋转180°得到抛物线C2(其中m>0),抛物线C2与x轴右侧的交点为点B,顶点为点Q.
①当m=1时,求线段AB的长;
②在①的条件下,是否存在△ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;
③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一个不透明的袋中,装有5个黄球,8个红球,7个白球,它们除颜色外都相同,从袋中任意摸出一个球,是黄球的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,如图①,△ABC、△AED是两个全等的等腰直角三角形(其顶点B、E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.

(1)问题发现
①如图①,线段OF与EC的数量关系为OF=$\frac{\sqrt{2}}{2}$EC;
②将△AED绕点A逆时针旋转45°,如图②,OF与EC的数量关系为OF=$\frac{\sqrt{2}}{2}$EC;
(2)类比延伸
将图①中△AED绕点A逆时针旋转到如图③所示的位置,请判断线段OF与EC的数量关系,并给出证明.
(3)拓展探究
将图①中△AED绕点A逆时针旋转,旋转角为α,0°≤α≤90°,AD=$\sqrt{2}$,△AED在旋转过程中,存在△ACD为直角三角形,请直接写出线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.

(1)当t为何值时,PQ∥AB?
(2)当t=3时,求△QMC的面积;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.
(1)求证:△PCE≌△EDQ;
(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;
(3)如图3,若△ARB∽△PEQ,求∠MON大小

查看答案和解析>>

同步练习册答案