【题目】图1是长方形纸带,将纸带沿折叠成图2,再沿即折叠成图3,若在图1中∠DEF=a,则图3中∠CFE用含有a的式子表示=_______(0<a<60°) .
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,过点作轴的平行线,交轴于点,且三角形的面积是.
()求点,的坐标;
()点,分别为线段,上的两个动点,点从点向左以个单位长度/秒运动,同时点从点向点以个单位长度/秒运动,如图所示,设运动时间为秒.
①当时,求的取值范围;
②是否存在一段时间,使得?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )
A. π-4 B. π-1 C. π-2 D. -2
【答案】C
【解析】试题解析:∵∠BAC=45°,
∴∠BOC=90°,
∴△OBC是等腰直角三角形,
∵OB=2,
∴△OBC的BC边上的高为:OB=,
∴BC=2
∴S阴影=S扇形OBC﹣S△OBC=.
故选C.
【题型】单选题
【结束】
10
【题目】夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为( )
A.8m B.6.4m C.4.8m D.10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须测量M、N两点之间的直线距离.选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M、N两点之间的直线距离.
【答案】M、N两点之间的直线距离为1500米.
【解析】试题分析:先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.
试题解析:在△ABC与△AMN中, , =,∴,又∵∠A=∠A,
∴△ABC∽△AMN,∴,即,
解得:MN=1500米,
答:M、N两点之间的直线距离是1500米;
考点:相似三角形的应用.
【题型】解答题
【结束】
23
【题目】如图,在△ADC中,点B是边DC上的一点,∠DAB=∠C, .若△ADC的面积为18cm,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E、F分别是边AD,BC的中点.张老师请同学们将纸条的下半部分即平行四边形ABFE沿EF翻折,得到一个V字形图案.
(1)请你在原图中画出翻折后的图形平行四边形A′B′FE(用尺规作图,不写画法,保留作图痕迹)
(2)已知∠A=63°,求∠B′FC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的社会实践活动中,第一小组负责调查全校10000名同学每天完成家庭作业时间情况,他们随机抽取了一部分同学进行调查,井绘制了所抽取样本的频数分布表和额数分布直方图(如图).
时间x(小时) | 频数 | 百分比 |
0.5≤x<1 | 4 | 8% |
1≤x<1.5 | 5 | 10% |
1.5≤x<2 | a | 40% |
2≤x<2.5 | 15 | 30% |
2.5≤x<3 | 4 | 8% |
x≥3 | 2 | b |
频数分布表
请根据图中信息解答下列问题:
(1)该小组一共抽查了___________人;
(2)频数分布表中的a=___________,b=____________;
(3)将频数分布直方图补充完整(直接画图,不写计算过程);
(4)《辽宁省落实教育部等九部门关于中小学生减负措施实施方案》规定,初中生每天书面家庭作业时间不超过1.5小时,根据表中数据,请你提出合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com