精英家教网 > 初中数学 > 题目详情

【题目】一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,ENAD于点M(图2),则EM的长为(  )

A. 2 B. C. D.

【答案】D

【解析】分析: (1)通过证明GAB≌△GCD即可证得线段AG、C′G相等;

(2)在直角三角形DMN中,利用勾股定理求得MN的长,则EN-MN=EM的长.

详解: (1)证明:∵沿对角线BD对折,C落在点C的位置,

∴∠A=C′,AB=CD

∴在GABGCD中,

GABGCD

AG=CG

(2)∵点D与点A重合,得折痕EN

DM=4cm

AD=8cmAB=6cm

RtABD,BD==10cm

ENADABAD

ENAB

MNABD的中位线,

DN=BD=5cm

RtMND中,

MN==3(cm),

由折叠的性质可知∠NDE=NDC

ENCD

∴∠END=NDC

∴∠END=NDE

EN=ED,设EM=x,则ED=EN=x+3,

由勾股定理得ED=EM+DM,(x+3) =x+4,

解得x=,EM=cm.

点睛: 本题考查了折叠的性质,三角形全等的判定与性质,三角形相似的判定与性质,勾股定理的运用.关键是由性质将有关线段进行转化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系,直线分别交轴于点AB两点,OA=5,OAB=60°.

(1)如图1,求直线AB的解析式;

(2)如图2,P为直线AB上一点,连接OP,DOA延长线上,分别过点PDOAOP的平行线,两平行线交于点C,连接AC,AD=m,ABC的面积为S,Sm的函数关系式;

(3)如图3,(2)的条件下,PA上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE的周长等于22,求S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC是等腰直角三角形,四边形ADEF是正方形,点DF分别在ABAC边上,此时BD=CFBDCF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BDCF于点G.

①求证:BDCF ②当AB=4AD=时,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.

(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;

(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线轴交于点,与轴交于点,与反比例函的图象交于点,且

1)求点的坐标和反比例函数的解析式;

2)点轴上,反比例函数图象上存在点,使得四边形为平行四边形,求M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列语句画图:

1)画∠AOB120°

2)画∠AOB的角平分线OC

3)反向延长OC得射线OD

4)分别在射线OAOBOD上画线段OEOFOG2cm

5)连接EFEGFG

6)你能发现EFEGFG有什么关系?∠EFG、∠EGF、∠GEF有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)45两月平均每月降价的百分率约是多少?(参考数据:≈0.95)

(2)如果房价继续跌落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌跛10 000/m2?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017514日至15日,一带一路国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往一带一路沿线国家和地区. 已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500.

(1)甲种商品与乙种商品的销售单价各多少元?

(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5/吨收费,超出10吨的部分按2/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和缴纳水费情况,根据表格提供的数据,回答:

月份

用水量(吨)

6

7

12

15

水费(元)

12

14

28

37

(1)该市规定用水量为   吨,规定用量内的收费标准是   /吨,超过部分的收费标准是   /吨.

(2)若小明家五月份用水20吨,则应缴水费   元.

(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?

查看答案和解析>>

同步练习册答案