【题目】已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).
【答案】(1)见解析;(2)四边形MENF是菱形.(3)2:1.
【解析】试题分析:(1)根据SAS即可证明△ABM≌△DCM;(2)由(1)得出BM=CM,再根据三角形的中位线定理得出EN=MF,EM=FN,先证四边形MENF是平行四边形,再证ME=MF,从而可得平行四边形MENF是菱形;(3)当AD∶AB=2∶1时,四边形MENF是正方形.可以利用正方形的性质得到MA=AB=MD,从而确定AD:AB的值.
试题解析:(1)证明:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,∴AM=DM,
在△ABM和△DCM,
∴△ABM≌△DCM(SAS);
答:四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,,
∴NE=FM,NE∥FM,∴四边形MENF是平行四边形,
∵△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形;
解:当AD∶AB=2∶1时,四边形MENF是正方形.理由是:
∵四边形MENF是正方形,
∴∠EMF=90°,
由(1)知:Rt△ABM≌Rt△DCM(SAS),
∴∠AMB=∠DMC=45°,
此时MA=MD=DC,
∴AD=2DC,即AD∶AB=2∶1.
科目:初中数学 来源: 题型:
【题目】已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;
(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E.
(1)若B、C在DE的同侧(如图1所示)且AD=CE,AB与AC垂直吗?为什么?
(2)若B、C在DE的两侧(如图2所示),其他条件不变,AB与AC是否垂直吗?若垂直请给出证明;若不垂直,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若a,b为有理数,a>0,b<0,且|a|<|b|,则a,b,-a,︱b︱的大小关系是( )
A.b<-a<︱b︱<a
B.b<-a<a<︱b︱
C.b<︱b︱<-a<a
D.-a<︱b︱<b<a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.
(1)求返回时A、B两地间的路程;
(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com