精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,已知△ABC、△BCD、△ACD的面积之比是3:1:4,点E在边AD上,CE交BD于G,设
(1)求的值;
(2)若点H分线段BE成的两段,且AH2+BH2+DH2=p2,试用含p的代数式表示△ABD三边长的平方和.

【答案】分析:(1)不妨设△ABC、△BCD、△ACD的面积分别为3、1、4.根据等高的两个三角形的面积比等于它们的底的比,分别用k表示相关一些三角形的面积,从而得到关于k的方程,进行求解;
(2)根据(1)的结论,知E、G分别为AD、BD的中点,结合已知,得点H是△ABD的重心.延长BE到K,使得BE=EK,连接AK、DK,构造平行四边形,根据平行四边形的性质和重心的性质进行分析求解.
解答:略解:(1)不妨设△ABC、△BCD、△ACD的面积分别为3、1、4.

∴△ABD的面积是6,△BDE的面积是
∴△CDG的面积是,△CDE的面积为,△DEG的面积是
由此可得:+=
即4k2-3k-1=0,
∴k=1.
=3.

(2)由(1)知:E、G分别为AD、BD的中点,
又∵点H分线段BE成的两段,
∴点H是△ABD的重心.
而当延长BE到K,使得BE=EK,连接AK、DK后便得到平行四边形ABDK,再利用“平行四边形的四边平方和等于两对角线的平方和”就可得:2(AB2+BD2)=AD2+4BE2,类似地有,其中点M为边AB的中点.
∴3(AB2+BD2+AD2)=4(BE2+DM2+AG2).
,AH2+BH2+DH2=p2

∴AB2+BD2+AD2=3p2
点评:此题综合运用了平行四边形的性质和三角形的重心的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案