精英家教网 > 初中数学 > 题目详情

二次函数的图象过点A(3,0),B(-1,0)且与y轴交点为C(0,6).

1.(1)此二次函数的解析式;

2.(2)求三角形ABC的面积;

3.(3)若点D位于x轴上方的抛物线上,当△ABD的面积取得最大值时,求D点的坐标.

 

 

1.解:(1) 设y=a(x-3)(x+1)  (a≠0)

           ∵图象过(0,6)

           ∴-3a=6

             a=-2

           ∴y=-2x2+4x+6

2.(2)S△ABC=AB∙OC=×4×6=12

3.(3)D(1,8)为顶点时,△ABD最大。

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数的图象过点(4,3),它的顶点坐标是(2,-1).
(1)求这个二次函数的关系式;
(2)若二次函数的图象与x轴交于点A、B(A在B的左侧),与y轴交于点C,线段AC的垂直平分线与x轴交于点D.求:①点D的坐标;②△DBC的外接圆半径R的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:一次函数y=-
12
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象过点A(0,-1),B(1,1),C(-1,2),求此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案