精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=-x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.

【答案】(1)反比例函数的表达式y=,点B坐标(3,1);(2)最小值为2

【解析】

试题分析:(1)把点A(1,a)代入一次函数y=-x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;

(2)作点B作关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,然后根据勾股定理即可求得.

试题解析:(1)把点A(1,a)代入一次函数y=-x+4,

得a=-1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=

得k=3,

∴反比例函数的表达式y=

两个函数解析式联立列方程组得

解得x1=1,x2=3,

∴点B坐标(3,1);

(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,

∴D(3,-1),

∵A(1,3),

∴AD=

∴PA+PB的最小值为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.

探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图①,连接边长为2的正三角形三条边的中点,从上往下看:

边长为1的正三角形,第一层有1个,第二层有3个,共有个;

边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.

探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(12)

1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出A1坐标是   

2)以原点O为对称中心,画出与△ABC关于原点O对称的△A2B2C2,并写出B2坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角ABC中,DE分别为ABBC中点,FAC上一点,且∠AFE=ADMEFAC于点M

1)点GBE上,且∠BDG=C,求证:DGCF=DMEG

2)在图中,取CE上一点H,使∠CFH=B,若BG=1,求EH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于AB两点,与双曲线y2=x>0)交于点C,过点CCDx轴,垂足为D,且OA=AD,则以下结论:①当x>0时,y1x的增大而增大,y2x的增大而减小;②;③当0<x<2时,y1y2;④如图,当x=4时,EF=4.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则AOC的面积为(  )

A. 12 B. 9 C. 6 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁AB两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.

1)求AB两种车型各有多少个座位;

2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7B型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,将沿翻折得到,射线与射线相交于点,若是等腰三角形,则的度数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

查看答案和解析>>

同步练习册答案