精英家教网 > 初中数学 > 题目详情
1.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.
(1)如果AB=10,求DE的长;
(2)延长DE交AF于点M,求证:点M是AF的中点.

分析 (1)连接CF,根据直角三角形的性质得到CF=$\frac{1}{2}$AB=5,根据三角形中位线定理得到EF∥BC,EF=$\frac{1}{2}$BC,证明四边形EDCF是平行四边形,根据平行四边形的性质证明;
(2)根据平行四边形的性质、平行线等分线段定理证明.

解答 解:(1)连接CF,
在Rt△ABC中,F是AB的中点,
∴CF=$\frac{1}{2}$AB=5,
∵点E,F分别是边AC,AB的中点,
∴EF∥BC,EF=$\frac{1}{2}$BC,
∵2CD=BC,
∴EF=CD,EF∥CD,
∴四边形EDCF是平行四边形,
∴DE=CF=5;

(2)如图2,∵四边形EDCF是平行四边形,
∴CF∥DM,
∵点E是边AC的中点,
∴点M是AF的中点.

点评 本题考查的是三角形中位线定理、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.$\sqrt{36}$的平方根是±$\sqrt{6}$,81的算术平方根是9,$\root{3}{-64}$=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(2$\sqrt{3}$+$\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$)-${(2\sqrt{3}-\sqrt{6})}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在长方形ABCD中,AB=6,AD=4,点P是CD上的动点,且不与点C,D重合,设DP=x,梯形ABCP的面积为y,则下面表述正确的是(  )
A.y=24-2x,0<x<6B.y=24-2x,0<x<4C.y=24-3x,0<x<6D.y=24-3x,0<x<4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,正五边形ABCDE的对角线BD、CE相交于点F,则下列结论正确的是(  )
A.∠BCE=36°B.△BCF是直角三角形
C.△BCD≌△CDED.AB⊥BD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知?ABCD中,AD=8cm,AB=10cm,BD=12cm,点P从点A出发,以1cm/s的速度向点B运动,同时点Q从点C出发以相同的速度向点D运动,设运动时间为t.
(1)连接DP、BQ,求证:DP=BQ;
(2)填空:
①当t为1s时,四边形PBQD是矩形;
②当t为2s时,四边形PBQD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,A(a,0),B(12,b),C(0,b)且$\sqrt{\frac{1}{2}a-4}$+(b-6)2=0,线段PQ=7.
(1)写出A,B,C三点的坐标.
(2)若线段PQ在x轴上移动,当CP平分∠BCO时,此时OP=OC,作∠CQA邻补角的平分线交直线CP于点E,请你在答题卷画出图形,并探求∠PEQ与∠OCQ数量关系.
(3)若线段PQ在y轴上移动,是否存在三角形ABP的面积是三角形ABQ的面积的2倍?若存在直角写出P、Q两点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=-x-4是函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的一条“隔离直线”.
(1)在直线y1=-2x,y2=3x+1,y3=-x+3中,是图1函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的“隔离直线”的为y1=-2x;
请你再写出一条符合题意的不同的“隔离直线”的表达式:y=-3x;
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是($\sqrt{3}$,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;
(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2-2x-3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为∠AOB内一点,OC=m(m为正数),过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.C为射线OA上任一点,连结CP并延长交OB于N点

(1)若∠AOB=60°,OQ:OM:MC=1:4:2,探索CN、ON、OC之间的数量关系并加以证明.
(2)当点P在边∠AOB的平分线上运动时,问:$\frac{1}{OM}$-$\frac{1}{ON}$的值是否发生变化?如果变化,指出该值随m的变化情况;如果不变,请说明理由.
(3)在(2)的条件下,二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x-1012
y-1355
若m的值是关于x的方程ax2+(b-1)x+c=0中较大的根,菱形OMPQ的面积为S1,△NOC的面积为S2,求$\frac{{S}_{1}}{{S}_{2}}$的取值范围.

查看答案和解析>>

同步练习册答案