【题目】如图,在ABCD中,对角线AC、BD相交于点O,点E、F分别是边AD、AB上的点,连结OE、OF、EF.若AB=7,BC=5,∠DAB=45°,则①点C到直线AB的距离是_____.②△OEF周长的最小值是________.
【答案】5
【解析】
①过D作DP⊥AB于P,,则△ADP是等腰直角三角形,根据等腰直角三角形的性质得到,进而求得AP=DP=5;
②作点O关于AB的对称点M,点O关于AD的对称点N,连接MN交AB于F交AD于E,则△OEF周长的最小, △OEF周长的最小值=MN,由作图得: AN=AO=AM, ∠NAD=∠DAO, ∠MAB=∠BAO,于是得到.根据三角形的中位线的性质得到,,根据勾股定理得到,然后根据等腰直角三角形的性质即可得到结论.
①过D作DP⊥AB于P,
则A△DP是等腰直角三角形,
,
,
∴AP=DP=sin45°×5=5;
②作点O关于AB的对称点M,点O关于AD的对称点N,连接MN交AB于F交AD于E,则△OEF周长的最小, △OEF周长的最小值=MN,
由作图得:AN=AO=AM, ∠NAD=∠DAO, ∠MAB=∠BAO,
,
,
∵OM⊥AB于Q,
,
,
,
,
,
,
,
∴△OEF周长的最小值是.
故答案为①5;② .
科目:初中数学 来源: 题型:
【题目】某市出租车计费方法如图所示,表示行驶里程,(元)表示车费,请根据图象回答下列问题:
(1)出租车的起步价是多少元;
(2)当 时,求关于的函数关系式;
(3)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(1)证明:AM=AD+MC.
(2)若四边形ABCD是平行四边形,其它条件不变,如图,(1)中的结论是否成立?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按元销售时,每天可销售个;若销售单价每降低元,每天可多售出个.已知每个玩具的固定成本为元,问这种玩具的销售单价为多少元时,厂家每天可获利润元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:.
(1)李红第几天生产的粽子数量为260只?
(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是( )
A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com