精英家教网 > 初中数学 > 题目详情
11.下列说法中正确的个数有(  )
①有一个角为60°的等腰三角形是等边三角形;
②三边长为$\sqrt{14}$,$\sqrt{5}$,3的三角形为直角三角形;
③等腰三角形的两条边长为2,4,则等腰三角形的周长为10或8;
④一边上的中线等于这边长的一半的三角形是等腰直角三角形.
A.1个B.2个C.3个D.4个

分析 根据等边三角形的判定可得①正确;根据勾股定理逆定理可判定出②正确;根据三角形的三边关系可得2只能当底,不能当腰,因此周长为10,故③错误;一边上的中线等于这边长的一半的三角形是直角三角形,故④错误.

解答 解:①有一个角为60°的等腰三角形是等边三角形,说法正确;
②三边长为$\sqrt{14}$,$\sqrt{5}$,3的三角形为直角三角形,说法正确;
③等腰三角形的两条边长为2,4,则等腰三角形的周长为10或8,说法错误;
④一边上的中线等于这边长的一半的三角形是等腰直角三角形,说法错误.
正确的说法有2个.
故选:B.

点评 此题主要考查了等边三角形的判定、勾股定理逆定理、直角三角形判定、以及等腰三角形,关键是掌握等边三角形的判定定理,三角形的三边关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.在△ABC中,AB=14,AE=12,BD=7,BC=28,且∠BAD=∠EAC.
(1)EC的长?
(2)△AED∽△BEA是否相似?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.请先观察下列算式,再填空:32-12=8×1,52-32=8×2,72-52=8×3,92-72=8×4,…,通过观察归纳,写出反映这种规律的一般结论:(2n+1)2-(2n-1)2=8n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax-3a2
=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a)
材料2.因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2-6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(a-b)2+2(a-b)+1;
②分解因式:(m+n)(m+n-4)+3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是520 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.方程$\frac{5}{{x}^{2}+x}$+$\frac{3}{{x}^{2}-x}$=$\frac{6}{{x}^{2}-1}$的解为(  )
A.x=1B.x=-1C.x=$\frac{3}{5}$D.无解

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读材料:若m2-2mn+2n2-2n+1=0,求m、n的值.
解:∵m2-2mn+2n2-2n+1=0,∴(m2-2mn+n2)+(n2-2n+1)=0
∴(m-n)2+(n-1)2=0,∴(m-n)2=0,(n-1)2=0,∴n=1,m=1.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;
(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b-52,且△ABC是等腰三角形,求c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,点A1,A2依次在y=$\frac{4\sqrt{3}}{x}$(x>0)的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为(  )
A.(4,0)B.(4$\sqrt{2}$,0)C.(6,0)D.(6$\sqrt{2}$,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.学习了数据的收集、整理与表示之后,某小组同学对本校“自主选修活动课”比较感兴趣,他们以问卷的形式随机调查了40名学生的选课情况(每人只能选一项),并统计如下:
科目篮球围棋剪纸舞台剧茶艺交谊舞其它课
计数正正 正一正一
(1)请选择一种统计图将上表中的结果表示出来;
(2)该校共有500名学生,请估计选修篮球课的人数;并说明你估计的理由;
(3)谈谈你对该校“自主选修活动课”的科目设置有哪些建议?

查看答案和解析>>

同步练习册答案