【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点O为旋转中心旋转90°,请画出旋转后的△A′B′C′;
(2)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
【答案】
(1)
解:如图1所示;将△ABC以点O为旋转中心逆时针旋转90°得到△A′B′C′,将△ABC以点O为旋转中心顺时针旋转90°得到△A″B″C″,
(2)
解:如图2,作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求点,
∵A(﹣3,2),
∴A′(﹣3,﹣2).
设直线A′B的解析式为y=kx+b(k≠0),
∵A′(﹣3,﹣2),B(0,4),
∴ ,解得 ,
∴直线A′B的解析式为y=2x+4,
∵当y=0时,x=﹣2,
∴P(﹣2,0)
【解析】(1)根据图形旋转的性质画出图形即可;(2)作点A关于x轴的对称点A′,连接A′B交x轴于点P,利用待定系数法求出直线A′B的解析式,进而可得出P点坐标.
科目:初中数学 来源: 题型:
【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.
(1)求E点坐标;
(2)设抛物线的解析式为y=a(x﹣h)2+k,求a,h,k;
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点M,N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y= x2(0≤x≤2)的图象记为曲线C1 , 将C1绕坐标原点O逆时针旋转90°,得曲线C2 .
(1)请画出C2;
(2)写出旋转后A(2,5)的对应点A1的坐标;
(3)直接写出C1旋转至C2过程中扫过的面积 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用直尺和圆规作一个角等于已知角的作法如下:
①以点O为圆心,以任意长为半径画弧,分别交OA、OB于点D、C;
②作射线O′B′,以点O′为圆心,以 长为半径画弧,交O′B′于点C′;
③以点C′为圆心,以 长为半径画弧,两弧交于点D′;
④过点D′作射线O′A′,∴∠A′O′B′为所求.
(1)请将上面的作法补充完整;
(2)△OCD≌△O′C′D′的依据是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=3x﹣3分别交x轴,y轴于A,B两点,抛物线y=x2+bx+c经过A,B两点,点C是抛物线与x轴的另一个交点(与点A不重合),点D是抛物线的顶点,请解答下列问题.
(1)求抛物线的解析式;
(2)判断△BCD的形状,并说明理由;
(3)求△BCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤网,空气净化器和过滤网在两家商场的售价一样.已知买一个空气净化器和个过滤网要花费元,买个空气净化器和个过滤网要花费元.
()请用方程组求出一个空气净化器与一个过滤网的销售价格分别是多少元?
()为了迎接新年,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤网.若某单位想要买个空气净化器和个过滤网,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P,Q分别是边长为4 cm的等边三角形ABC边AB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1 cm/s,连接AQ,CP,相交于点M.下面四个结论正确的有________(填序号).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度数不变,始终等于60;④当第s或s时,△PBQ为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△BDE中,∠BDE=90°,BD=6 ,点D的坐标是(7,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com