精英家教网 > 初中数学 > 题目详情
7.已知,如图,在凸四边形ABCD中,AC平分∠BAD,过点C作CE⊥AB,E为垂足,BC=CD,求证:AE=$\frac{1}{2}$(AB+AD).

分析 过C作CM⊥AD于M,证△MAC≌△EAC,推出AM=AE,证Rt△DMC≌Rt△BEC,推出BE=DM,求出AB+AD=AE+BE+AD=AE+DM+AD=2AM=2AE,即可得出答案.

解答 证明:过C作CM⊥AD于M,如图,

∵CE⊥AB,
∴∠M=∠CEB=90°,
∵∠ABC+∠ADC=180°,∠ADC+°,
∴∠B=∠MDC,
∵AC平分∠BAD,CM⊥AD,CE⊥AB,
∴CM=CE,∠MAC=∠EAC,
在△MAC和△EAC中,
$\left\{\begin{array}{l}{∠MAC=∠EAC}\\{∠M=∠AEC=90°}\\{AC=AC}\end{array}\right.$,
∴△MAC≌△EAC(AAS),
∴AM=AE,
∵∠M=∠BEC=90°,
∴在Rt△DMC和Rt△BEC中
$\left\{\begin{array}{l}{CD=BC}\\{CM=CE}\end{array}\right.$
∴Rt△DMC≌Rt△BEC(HL),
∴BE=DM,
∴AB+AD
=AE+BE+AD
=AE+DM+AD
=2AM
=2AE,
即AE=$\frac{1}{2}$(AB+AD).

点评 本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,题目比较好,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,在△ABC中,已知AC=5,BC=12,AB=13,D为边AB的中点,DE⊥AB且与∠ACB的平分线交于点E,则DE的长为$\frac{13}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图所示,直线l过等腰直角三角形ABC的顶点B,点A,C到直线l的距离分别为2和3,则图中两垂足M,N之间的线段长度是5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列调查最适合用全面调查的是(  )
A.调查某批汽车的抗撞击能力
B.鞋厂检测生产的鞋底能承受的弯折次数
C.了解全班学生的视力情况
D.检测吉林市某天的空气质量

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE.求证:∠CDA=∠EBA.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图①,△ABC、△BDE是两个大小不等的正三角形,且点E在BC上,连接AE、CD.
(1)线段AE和CD有怎样的大小关系?请证明你的结论;
(2)将图①中的△BDE绕点B旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,以△ABC的边AB,AC为边长向外作等边△ABD和等边△ACE,连接BE,CD相交于点O.△ABC中,∠BAC=90°,∠ABC=30°,且BC=2,OB的长为$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,已知EC=BF,AB∥CD,现有下列5个条件:①AE=DF;②∠B=∠C;③DF∥AE;④∠A=∠D;⑤AB=CD;从中选取一个条件,以保证△ABE≌△DCF,则可选择的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠DAC=92°.

查看答案和解析>>

同步练习册答案