如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连结AE,过点E作EF⊥AB于点F.
【小题1】(1)求证:CE是⊙O的切线;
【小题2】(2)若FB=2, tan∠CAE=,求OF的长.
【小题1】(1)证明:连结OE. ……………………………… 1分
∵ 点E为 的中点,
∴ ∠1=∠2.
∵ OE=OA,
∴ ∠3=∠2.
∴ ∠3=∠1.
∴ OE∥AC.
∵ AC⊥CE,
∴ OE⊥CE. ………………………………………… 2分
∵ 点E在⊙O上,
∴ CE是⊙O的切线.
【小题2】(2)解:连结EB.
∵ AB是⊙O的直径,
∴ ∠AED=90°.
∵ EF⊥AB于点F,
∴ ∠AFE=∠EFB=90°.
∴ ∠2+∠AEF=∠4+∠AEF=90°.
∴ ∠2=∠4=∠1.
∵ tan∠CAE=,
∴ tan∠4 =.
在Rt△EFB中,∠EFB=90°,FB=2, tan∠4 =,
∴ EF=. ……………………………………………………………… 4分
设 OE=x,则OB= x.
∵ FB=2,
∴ OF=x-2.
∵ 在Rt△OEF中,∠EFO=90°,
∴ x2=(x-2)2+()2.
∴ x=3(负值舍去).
∴ OF=1.
解析
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
BE | AD |
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com