精英家教网 > 初中数学 > 题目详情

【题目】如图,CD是经过∠BCA的顶点C的一条直线,CA=CB,E,F是直线CD上的两点,且∠BEC=CFA=α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:

①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如图(b),若0°<BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;

(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

【答案】(1)=,=;②所填的条件是:α+BCA=180°.证明见解析;(2)EF=BE+AF.

【解析】

(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可

(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.

解:(1)①如图,E点在F点的左侧,

∵BE⊥CD,AF⊥CD,∠ACB=90°,

∴∠BEC=∠AFC=90°,

∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,

∴∠CBE=∠ACF,

在△BCE和△CAF中

∴△BCE≌△CAF(AAS),

∴BE=CF,CE=AF,

∴EF=CF-CE=BE-AF,

当E在F的右侧时,同理可证EF=AF-BE,

∴EF=|BE-AF|;

②∠α+∠ACB=180°时,①中两个结论仍然成立;

证明:∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,

∴∠CBE=∠ACF,

在△BCE和△CAF中

∴△BCE≌△CAF(AAS),

∴BE=CF,CE=AF,

∴EF=CF-CE=BE-AF,

当E在F的右侧时,同理可证EF=AF-BE,

∴EF=|BE-AF|;

(2)EF=BE+AF

理由是:∵∠BEC=∠CFA=∠a,∠a=∠BCA,

又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,

∴∠EBC+∠BCE=∠BCE+∠ACF,

∴∠EBC=∠ACF,

在△BEC和△CFA中

∴△BEC≌△CFA(AAS),

∴AF=CE,BE=CF,

∵EF=CE+CF,

∴EF=BE+AF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )

①m是无理数;②m是方程m2 -12=0的解;③m满足不等式组,④m是12的算术平方根.

A. ①② B. ①③ C. D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BD=DE=EF=FG.

(1)若∠ABC=20°,ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.

(2)若∠ABC=m°(0<m<90),你能找出一个折线条数nm之间的关系吗?若有,请找出来;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,CEAB于点E,BDAC于点D,BD,CE交于点O,且AO平分∠BAC,则图中的全等三角形共有________对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:A=2x2+ax﹣5y+b,B=bx2x﹣y﹣3.

(1)求3A﹣(4A﹣2B)的值;

(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+A)﹣(2b+B)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=130°,射线OC∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是(  )

A. ∠DOE的度数不能确定 B. ∠AOD=∠EOC

C. ∠AOD+∠BOE=65° D. ∠BOE=2∠COD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.

(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:

方法一:S小正方形=   

方法二:S小正方形=   

(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为   

(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABCDCB有公共边BC,且AB=DC,作AEBCDFBC,垂足分别为EFAE=DF,那么求证AC=BD时,需要证明三角形全等的是Rt△ABE≌Rt△DCF,△AECDFB.说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张在自家土地上平整出了一块苗圃,并将这块苗圃分成了四个长方形区域,其尺寸如图所示图中长度单位:米,小张计划在这四个区域上按图中所示分别种植草本花卉 1 号、2 号、3 号、4 号.

(1)用式子表示这块苗圃的总面积;

(2)已知种植草本花卉 1 号、2 号、3 号、4 号的成本分别是每平方米 4 元、6 元、8 元、10 元.

①用式子表示小张在这块苗圃上种植草本花卉的总成本;

②当 a=9 时,求小张在这块苗圃上种植草本花卉的总成本.

查看答案和解析>>

同步练习册答案