【题目】如图,CD是经过∠BCA的顶点C的一条直线,CA=CB,E,F是直线CD上的两点,且∠BEC=∠CFA=α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如图(b),若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;
(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
【答案】(1)①=,=;②所填的条件是:α+∠BCA=180°.证明见解析;(2)EF=BE+AF.
【解析】
(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.
解:(1)①如图,E点在F点的左侧,
∵BE⊥CD,AF⊥CD,∠ACB=90°,
∴∠BEC=∠AFC=90°,
∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,
∴∠CBE=∠ACF,
在△BCE和△CAF中
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF-CE=BE-AF,
当E在F的右侧时,同理可证EF=AF-BE,
∴EF=|BE-AF|;
②∠α+∠ACB=180°时,①中两个结论仍然成立;
证明:∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,
∴∠CBE=∠ACF,
在△BCE和△CAF中
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF-CE=BE-AF,
当E在F的右侧时,同理可证EF=AF-BE,
∴EF=|BE-AF|;
(2)EF=BE+AF
理由是:∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.
科目:初中数学 来源: 题型:
【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )
①m是无理数;②m是方程m2 -12=0的解;③m满足不等式组,④m是12的算术平方根.
A. ①② B. ①③ C. ③ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD=DE=EF=FG.
(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.
(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.
(1)求3A﹣(4A﹣2B)的值;
(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+A)﹣(2b+B)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是( )
A. ∠DOE的度数不能确定 B. ∠AOD=∠EOC
C. ∠AOD+∠BOE=65° D. ∠BOE=2∠COD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.
(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:
方法一:S小正方形= ;
方法二:S小正方形= ;
(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为
(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的是Rt△ABE≌Rt△DCF,△AEC≌DFB.说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张在自家土地上平整出了一块苗圃,并将这块苗圃分成了四个长方形区域,其尺寸如图所示(图中长度单位:米),小张计划在这四个区域上按图中所示分别种植草本花卉 1 号、2 号、3 号、4 号.
(1)用式子表示这块苗圃的总面积;
(2)已知种植草本花卉 1 号、2 号、3 号、4 号的成本分别是每平方米 4 元、6 元、8 元、10 元.
①用式子表示小张在这块苗圃上种植草本花卉的总成本;
②当 a=9 时,求小张在这块苗圃上种植草本花卉的总成本.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com