3£®¹Û²ìÏÂÁи÷ʽµÄÌص㣺$\sqrt{2}$-1£¾$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$-$\sqrt{2}$£¾2-$\sqrt{3}$£¬2-$\sqrt{3}$£¾$\sqrt{5}$-2£¬¡­
£¨1£©Çë¸ù¾ÝÒÔÉϹæÂÉÌî¿Õ$\sqrt{2008}$-$\sqrt{2007}$£¼$\sqrt{2007}$-$\sqrt{2006}$
£¨2£©Çë¸ù¾ÝÒÔÉϹæÂÉд³öµÚn£¨n¡Ý1£©¸ö²»µÈʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©¸ù¾Ý$\sqrt{2}$-1£¾$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$-$\sqrt{2}$£¾2-$\sqrt{3}$£¬2-$\sqrt{3}$£¾$\sqrt{5}$-2£¬¡­£¬¿ÉµÃ$\sqrt{2008}$-$\sqrt{2007}$£¼$\sqrt{2007}$-$\sqrt{2006}$£¬¾Ý´ËÅжϼ´¿É£»
£¨2£©Ê×Ïȸù¾Ý¸ùºÅϸ÷¸öÊýµÄÌØÕ÷£¬ÅжϳöµÚn£¨n¡Ý1£©¸ö²»µÈʽÊÇ£º$\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+2}-\sqrt{n+1}£¨n¡Ý1£©$£¬È»ºóÖ¤Ã÷²»µÈʽ³ÉÁ¢¼´¿É£®

½â´ð ½â£º£¨1£©¡ß$\sqrt{2}$-1£¾$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$-$\sqrt{2}$£¾2-$\sqrt{3}$£¬2-$\sqrt{3}$£¾$\sqrt{5}$-2£¬¡­£¬
¡à$\sqrt{2008}$-$\sqrt{2007}$£¼$\sqrt{2007}$-$\sqrt{2006}$£®

£¨2£©¸ù¾Ý$\sqrt{2}$-1£¾$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$-$\sqrt{2}$£¾2-$\sqrt{3}$£¬2-$\sqrt{3}$£¾$\sqrt{5}$-2£¬¡­£¬
¿ÉµÃ$\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+2}-\sqrt{n+1}£¨n¡Ý1£©$£®

Ö¤Ã÷£º${£¨2\sqrt{n+1}£©}^{2}{-£¨\sqrt{n}+\sqrt{n+2}£©}^{2}$
=4£¨n+1£©-2£¨n+1£©-2$\sqrt{n}•\sqrt{n+2}$
=2£¨n+1£©-2$\sqrt{n}•\sqrt{n+2}$
¡ß${£¨n+1£©}^{2}{-£¨\sqrt{n}•\sqrt{n+2}£©}^{2}$
=£¨n2+2n+1£©-£¨n2+2n£©
=1
¡àn+1£¾$\sqrt{n}•\sqrt{n+2}$£¬
¡à2£¨n+1£©-2$\sqrt{n}•\sqrt{n+2}$£¾0£¬
¡à${£¨2\sqrt{n+1}£©}^{2}{-£¨\sqrt{n}+\sqrt{n+2}£©}^{2}$£¾0£¬
¡à2$\sqrt{n+1}£¾\sqrt{n}+\sqrt{n+2}$£¬
¡à$\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+2}-\sqrt{n+1}£¨n¡Ý1£©$³ÉÁ¢£®
¹Ê´ð°¸Îª£º£¼£®

µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁËʵÊý´óСµÄ±È½Ï£¬ÒªÊìÁ·ÕÆÎÕ£¬×¢Òâ¹Û²ì×ܽá³ö¹æÂÉ£¬²¢ÄÜÕýÈ·µÄÓ¦ÓùæÂɽâ¾öÎÊÌ⣬½â´ð´ËÌâµÄ¹Ø¼üÊÇÅжϳö£º$\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+2}-\sqrt{n+1}£¨n¡Ý1£©$£®
£¨2£©´ËÌ⻹¿¼²éÁ˲»µÈʽµÄÖ¤Ã÷£¬ÒªÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â·½³Ì×é$\left\{\begin{array}{l}{3x-4y+5z=3}\\{2x-2y+3z=4}\\{4x+y-2z=2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª$\frac{x}{3}$=$\frac{y}{5}$£¬Ôò$\frac{x}{x+y}$=$\frac{3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÖ±Ïßy=2x+1ºÍy=3x+bµÄ½»µãÔÚµÚ¶þÏóÏÞ£¬ÔòbµÄÈ¡Öµ·¶Î§ÊÇ1£¼b£¼$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì£º3a2-32a+52=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐͼÐÎÖУ¬ÊÇÖÐÐĶԳÆͼÐζø²»ÊÇÖá¶Ô³ÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¼ÆËã3a-2aµÄ½á¹ûµÈÓÚa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ò»¸±Èý½Ç°åÈçͼ°Ú·Å£¬±ßDE¡ÎAB£¬Ôò¡Ï1=105¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬Å×ÎïÏßy=$\frac{1}{2}$x2+bx+cÓëyÖá½»ÓÚµãC£¨0£¬-4£©£¬ÓëxÖá½»ÓÚµãA¡¢B£¬ÇÒBµãµÄ×ø±êΪ£¨2£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãPÊÇABÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷PE¡ÎAC½»BCÓÚµãE£¬Á¬½ÓCP£¬Çó¡÷PCEÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãDΪOAµÄÖе㣬µãMÊÇÏ߶ÎACÉÏÒ»µã£¬µ±¡÷OMDΪµÈÑüÈý½ÇÐÎʱ£¬Á¬½ÓMP¡¢ME£¬°Ñ¡÷MPEÑØ×ÅPE·­ÕÛ£¬µãMµÄ¶ÔÓ¦µãΪµãN£¬ÇóµãNµÄ×ø±ê£¬²¢ÅжϵãNÊÇ·ñÔÚÅ×ÎïÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸