精英家教网 > 初中数学 > 题目详情

如图,在直角坐标平面内,O为原点,已知抛物线y=x2+bx+3经过点A(3,0),与y轴的交点为B,设此抛物线的顶点为C.
(1)求b的值和C的坐标;
(2)若点C1与C关于x轴对称,求证:点C1在直线AB上;
(3)在(2)的条件下,在抛物线y=x2+bx+3的对称轴上是否存在一点D,使四边形OC1DB是等腰梯形?若存在,请求出点D的坐标;若不存在,请简要说明理由.

解:(1)∵抛物线y=x2+bx+3经过点A(3,0),
∴9+3b+3=0,
解得:b=-4,
∴此抛物线的解析式为:y=x2-4x+3=(x-2)2-1,
∴此抛物线的顶点为C的坐标为(2,-1);

(2)∵点C1与C关于x轴对称,
∴点C1的坐标为(2,1),
∵当x=0时,y=3,
∴点B的坐标为(0,3),
设直线AB的解析式为:y=kx+b,

解得:
∴直线AB的解析式为:y=-x+3,
∵-2+3=1,
∴点C1在直线AB上;

(3)存在.
如图1,若BD∥OC1
∵直线OC1的解析式为:y=x,
∴设直线BD的解析式为:y=x+b,
则b=3,
∴直线BD的解析式为:y=x+3,
设点D(a,a+3),
∵AB=C1D,
∴(a-2)2+(a+3-1)2=9,
∴a=-(不合题意,舍去)或a=2(此题是平行四边形,舍去);
如图2,当DC1∥OB,
过点D作DE⊥OB于E,过点C作FC⊥x轴于F,
∵四边形OC1DB是等腰梯形,
∴BE=CF=1,DE=OF=2,
∴CD=OB-2BE=3-2=1,
∴DF=2,
∴点D的坐标为(2,2).
故带D的坐标为(2,2).
分析:(1)由抛物线y=x2+bx+3经过点A(3,0),利用待定系数法即可求得b的值,然后求得此抛物线的解析式,配方,即可求得顶点为C的坐标;
(2)由点C1与C关于x轴对称,即可求得点C1的坐标,又由待定系数法求得直线AB的解析式,即可证得点C1在直线AB上;
(3)分为若BD∥OC1与DC1∥OB去分析,根据平行线的性质与等腰三角形的性质,即可求得点D的坐标.
点评:此题考查了待定系数法求函数的解析式,等腰梯形的性质,平行线的性质以及点与函数的关系.此题综合性很强,难度较大,解题的关键是方程思想、分类讨论思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案