精英家教网 > 初中数学 > 题目详情

两直线相交于y轴上一点A,分别交x轴与B,C,且两直线互相垂直,若点A坐标为(0,1),B点坐标为(2,0),则点C的坐标为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:易证△OAB∽△ACB,即可求得=,已知AB、OA、OB即可求得OC的长,即可解题.
解答:解:∵∠BAC=90°,∠BOA=90°
∴△OAB∽△ACB,
==
∴AC=
故OC=
∴C点坐标为(-,0).
故选A.
点评:本题考查了相似三角形的证明,相似三角形对应边比值相等相等的性质,本题中求证△OAB∽△ACB是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数表达式(用含a,b的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明精英家教网∠MOB=
1
3
∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数学家帕普斯借助函数给出一种“三等分锐角”的方法,步骤如下:
①将锐角∠AOB置于平面直角坐标系中,其中以点O为坐标原点,边OB在x轴上;
②边OA与函数y=
1
x
(x>0)
的图象交于点P,以P为圆心,2倍OP的长为半径作弧,在∠AOB内部交函数y=
1
x
(x>0)
的图象于点R;
③过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连结OM.则∠MOB=
1
3
∠AOB.
请根据以上材料,完成下列问题:

(1)应用上述方法在图1中画出∠AOB的三等分线OM;
(2)设P(a,
1
a
),R(b,
1
b
)
,求直线OM对应的函数表达式(用含a,b的代数式表示);
(3)证明:∠MOB=
1
3
∠AOB;
(4)应用上述方法,请尝试将图2所示的钝角三等分.

查看答案和解析>>

科目:初中数学 来源:第1章《反比例函数》中考题集(26):1.3 实际生活中的反比例函数(解析版) 题型:解答题

“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(a,)、R(b,),求直线OM对应的函数表达式(用含a,b的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).

查看答案和解析>>

科目:初中数学 来源:2005年广东省佛山市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•佛山)“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(a,)、R(b,),求直线OM对应的函数表达式(用含a,b的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).

查看答案和解析>>

同步练习册答案