精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD和四边形A′B′C′D′位似,位似比k1=2,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2=1.四边形A″B″C″D″和四边形ABCD是位似图形吗?位似比是多少?
精英家教网
分析:因为四边形A″B″C″D″和四边形ABCD的对应顶点的连线已经相交于一点了,所以我们只要证明四边形A″B″C″D″∽四边形ABCD即可;相似具有传递性,所以可证得四边形A″B″C″D″∽四边形ABCD;又因为位似比等于相似比,所以可求得四边形A″B″C″D″和四边形ABCD的位似比.
解答:解:∵四边形ABCD和四边形A′B′C′D′位似,
∴四边形ABCD∽四边形A′B′C′D′.
∵四边形A′B′C′D′和四边形A″B″C″D″位似,
∴四边形A′B′C′D′∽四边形A″B″C″D″.
∴四边形A″B″C″D″∽四边形ABCD.
∵对应顶点的连线过同一点,
∴四边形A″B″C″D″和四边形ABCD是位似图形.
∵四边形ABCD和四边形A′B′C′D′位似,位似比k1=2,
四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2=1,
∴四边形A″B″C″D″和四边形ABCD的位似比为
1
2
点评:此题考查了位似图形的判定方法与性质,位似是相似的特殊形式,位似比等于相似比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案