精英家教网 > 初中数学 > 题目详情
10.如图,菱形ABCD的周长为16,∠DAB=60°,对角线AC上有两点E和F,且AE<$\frac{1}{2}$AC,AE=CF.
(1)求证:四边形DEBF是菱形;
(2)求AC的长.
(3)当AE的长为2$\sqrt{3}$-2时,四边形DEBF是正方形(不必证明).

分析 (1)连接BD,由菱形ABCD的性质得出OA=OC,OB=OD,AC⊥BD,得出OE=OF,证出四边形BEDF是平行四边形,再由EF⊥BD,即可证出四边形BEDF是菱形;
(2)由菱形ABCD的对角线相互垂直平分,对角线平分对角的性质,解直角△AOD可以求得AO的长度,则AC=2AO;
(3)由“正方形的对角线相互垂直平分且相等”进行解答.

解答 (1)证明:连接BD,交AC于O,如图所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
∵AE=CF,
∴OE=OF,
∴四边形DEBF是平行四边形,
∵EF⊥BD,
∴四边形DEBF是菱形;

(2)解:在菱形ABCD中,菱形ABCD的周长为16,∠DAB=60°,
则AD=4,∠DAO=30°,AC⊥BD且AC=2OA,
在直角△AOD中,OA=AD•cos30°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
故AC=2OA=4$\sqrt{3}$;

(3)解:当AE=2$\sqrt{3}$-2时,四边形DEBF是正方形.理由如下:
由(1)知,四边形DEBF是菱形.
当OD=OE时,四边形DEBF是正方形.
∵在直角△AOD中,∠DAO=30°,AD=4,
∴OD=$\frac{1}{2}$AD=2,OA=2$\sqrt{3}$,
∴AE=OA-OD=2$\sqrt{3}$-2.
故答案是:2$\sqrt{3}$-2.

点评 本题考查了菱形的性质与判定、平行四边形的判定、等腰三角形的性质以及三角函数的运用;熟练掌握菱形的性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,点A是抛物线y=x2-4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为(2,-1)或(2,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,∠ACB=90°,AC=BC,D为AB的中点.将△ACD绕点C逆时针旋转90°到△BCE.
(1)在图中画出△BCE,井简要说明作图过程;
(2)若AC=$\sqrt{2}$,求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:
(1)$\frac{tan(-60°)}{tan420°}$+tan300°•tan(-660°);
(2)cos2(-α)+sin(-α)•cos(2π+α)•tan(-α)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知抛物线y=a(x+m)2+b与x轴由交于点(-5,0)、(3,0)(a、b、m均为常数,a≠0),则抛物线y=a(x+m-2)2+b与x轴交于点(-3,0),(5,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知一个圆锥的侧面积是底面积的2倍,圆锥的母线长为2,则圆锥的底面半径是(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,平面直角坐标系中,抛物线y=-$\frac{3}{4}$x2+$\frac{9}{4}$x+3交x轴交于点A、B,交y轴于点C,点P从O出发,以每秒1个单位的速度向终点B运动,同时点Q从B出发,以每秒1个单位的速度向终点O运动,过点Q作DQ⊥x轴,交BC于点D,连接CP、DP.设运动时间为t.
(I)当t=1时.求线段PQ的长;
(2)求点D的坐标(用含t的式子表示);
(3)在点P,Q的运动过程中,是否存在t的值,使△DPQ与△COP相似?若存在.求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,P是△ABC内一点,求证:∠APB>∠ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.圆珠笔每支1.5元,n支圆珠笔1.5n元;当n=10时,计15元.

查看答案和解析>>

同步练习册答案