精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为

【答案】15
【解析】解:∵ABCD的周长为36, ∴2(BC+CD)=36,则BC+CD=18.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
∴OD=OB= BD=6.
又∵点E是CD的中点,
∴OE是△BCD的中位线,DE= CD,
∴OE= BC,
∴△DOE的周长=OD+OE+DE= BD+ (BC+CD)=6+9=15,
即△DOE的周长为15.
故答案为:15.
根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE= BC,所以易求△DOE的周长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2 时,求sin∠AED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y= 与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.

(1)BC边上的高;

(2)AB=10,

①求线段DF的长;

②连结AE,当△ABE时等腰三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一长方形花园用来种植菊花和郁金香,其余作为休息区;

(1)求种植菊花和郁金香的面积;

(2)m,m时,种植菊花和郁金香的面积是多少m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)如果∠1=∠B,那么______________,根据是__________________________

(2)如果∠3=∠D,那么______________,根据是__________________________;

(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形 ABCDA=90°,AB=3mBC=12mCD=13mDA=4m

(1)求证:BDCB

(2)求四边形 ABCD 的面积;

(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,

Py轴上,若 SPBD=S四边形ABCD P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:3+2=3×2-1,4+=4×-1,给出定义如下:

我们称使等式a+b=ab-1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.

(1)数对(-2,1),(5,)中是“椒江有理数对”的是

(2)若(a,3)是“椒江有理数对”,求a的值;

(3)若(m,n)是“椒江有理数对”,则(-n,-m) “椒江有理数对”(填“是”、“不是”或“不确定”).

(4)请再写出一对符合条件的“椒江有理数对” (注意:不能与题目中已有的“椒江有理数对”重复)

查看答案和解析>>

同步练习册答案