精英家教网 > 初中数学 > 题目详情
13、一个三角形其中两个内角都小于40°,该三角形是(  )
分析:设三角形的三个角的度数分别是x°,y°,z°,不妨设x<40,y<40,根据三角形的内角和定理,即可确定.
解答:解:设三角形的三个角的度数分别是x°,y°,z°,不妨设x<40,y<40.
又∵x+y+z=180
∴z>100.
则三角形一定是一个钝角三角形.
故选C.
点评:本题考查了三角形的内角和定理,关键是根据内角和定理确定内角的度数的范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用剪刀将形状如图(甲)所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图(乙)中的Rt△BCE就是拼成的一个图形.
(1)用这两部分纸片除了可以拼成图乙中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图丙、图丁的虚框内;
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2-(m-1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、按要求解答下列问题:
(1)图1是一块直角三角形纸片,将该三角形纸片按如图方法折叠,使点A与点C重合,DE为折痕,试证明△CBE为等腰三角形;
(2)再将图1中的△CBE沿对称轴EF折叠(如图2).通过折叠,原三角形恰好折成两个完全重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝隙无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”,你能将图3中的△ABC折叠成一个组合矩形吗?如果能折成,请在图3中画出折痕;
(3)请你在图4的方格纸中画出一个斜三角形,使它同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形顶点)上.(画出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等 合同.三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→A1环绕时,若运动方向相同,则称它们是真正合同三角形 如图,若运动方向相反,则称它们是镜面合同三角形 如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180° 如图,下列各组合同三角形中,是镜面合同三角形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(
9
2
9
2
)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:013

全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和是全等(合同)三角形,且点A与点对应,点B与点对应,点C与点对应,当沿周界A→B→C→A及环绕时,若运动方向相同,则称它们是真正合同三角形(如下图);若运动方向相反,则称它们是镜面合同三角形,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,而两个镜面合同三角形要重合,则必须将其中的一个翻转180°.

下列选项的各组三角形中,是镜面三角形的是

[  ]

查看答案和解析>>

同步练习册答案