精英家教网 > 初中数学 > 题目详情
(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

【答案】分析:(1)根据要求画出图形即可;
(2)不难发现:在4的基础上依次多3个.则第n次的时候,有4+3(n-1)=3n+1;
(3)根据(2)中的规律,得3n+1=33,n不是自然数,则不能.
解答:解:(1)

(2)7+3=10,10+3=13,13+4=17,…7+3(n-1)=3n+1;
等分圆及扇形面的次数(n)  4
 所得扇形的总个数(s) 4 710 13  … 3n+1
(3)当3n+1=33,因为n不是自然数,不能剪成.
点评:此题要能够用尺规作图,还要特别注意:每一次剪的时候,都是在上一次中的一个中进行,所以每一次只多了3个.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(07)(解析版) 题型:填空题

(2002•济南)如图,已知直线y=-x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=-x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=-x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是   

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(01)(解析版) 题型:选择题

(2002•济南)如图,已知AB,CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:填空题

(2002•济南)如图,已知直线y=-x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=-x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=-x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是   

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:选择题

(2002•济南)如图,有一个边长为6cm的正三角形ABC木块,点P是边CA的延长线上的点,在A、P之间拉一条细绳,绳长AP为15cm.握住点P,拉直细绳,把它全部紧紧缠绕在△ABC木块上(缠绕时木块不动),若圆周率取3.14,点P运动的路线长为( )(精确到0.1cm)

A.28.3cm
B.28.2cm
C.56.5cm
D.56.6cm

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:选择题

(2002•济南)如图,有一块边长为2的正方形ABCD厚纸板,按照下面做法,做了一套七巧板:作图①,作对角线AC,分别取AB,BC中点E,F,连接EF作DG⊥EF于G,交AC于H,过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K,将正方形ABCD沿画出的线剪开,现由它拼出一座桥(如图②),这座桥的阴影部分的面积是( )
A.8
B.6
C.5
D.4

查看答案和解析>>

同步练习册答案