精英家教网 > 初中数学 > 题目详情
阅读题:我国著名数学家华罗庚说过:“数缺形时少直观,形小数时难入微,数形结合百般好,隔离分家事万休.”数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整数;
如果采用数形结合的方法,现利用图形的性质来求1+2+3+4+…+n的值,方案如下:
如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3…n个小圆圈的个数恰好为所求式子1+2+3+4+…+n的值,为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

①仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n为正整数(要求画出图形,写出结果即可)
②试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求画出图形,写出结果即可)
精英家教网
分析:①根据题干的分析方法,我们也可以作出一个平行四边形,平行四边形的边长分别为2n,n;则组成一个平行四边形小圆圈的总个数为n×2n个,因此,组成一个三角形小圆圈的个数为n×n.
②根据提干的分析方法,如下图所示,我们可以作出一个正方形,它的边长为n,此时小圆圈的总个数为:n×n=n2
解答:解:①
精英家教网
组成平行四边形小圆圈的总个数为n×2n个,因此,组成一个三角形小圆圈的个数为n×n=n2

精英家教网
可以组成一个边长为n的正方形,因此1+3+5+7+…+(2n-1)=n×n=n2
点评:本题属于图形变化类得出规律型,关键在于根据提干得出方便求解的图形,如:平行四边形、正方形等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中数学 来源: 题型:022

填空题.

我国著名数学家华罗庚曾经说过这样一句话:“数形结合百般好,隔裂分家万事休”.如图,在一个边长为1的正方形纸板上,依次贴上面积为,…,的小长方形纸片,请你写出最后余下未贴部分的面积的表达式:________.

查看答案和解析>>

科目:初中数学 来源:2012年人教版七年级下第六章第二节用坐标表示地理位置练习卷(解析版) 题型:解答题

奔跑的狗

    苏步青是我国著名数学家、教育家,历任复旦大家教授、校长等职.1995年当选为中国科学院学部委员.苏步青的主要研究领域是微分几何学,他又是优秀的教学教育家,从事数学教学达60年,培养了大批数学人才.

    一次在德国,苏步青与一位有名的数学家同乘电车时,这位数学家出了一道题目给苏教授解答.

    这道题是:

甲乙两人同时从相距100千米的两地出发,相向而行,甲每小时走6千米,乙每小时走4千米,甲带了一只狗和他同时出发,狗以每小时10千米的速度向乙奔去,遇到乙即回头向甲奔去;遇到甲又回头向乙奔去,直到甲乙两人相遇时狗才停住.问这只狗共奔跑了多少千米路?

对这个问题,苏步青教授略加思索,就算出了正确的答案.请你也想一想,该怎么解答?

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读题:我国著名数学家华罗庚说过:“数缺形时少直观,形小数时难入微,数形结合百般好,隔离分家事万休.”数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整数;
如果采用数形结合的方法,现利用图形的性质来求1+2+3+4+…+n的值,方案如下:
如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3…n个小圆圈的个数恰好为所求式子1+2+3+4+…+n的值,为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为数学公式,即1+2+3+4+…+n=数学公式
①仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n为正整数(要求画出图形,写出结果即可)
②试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求画出图形,写出结果即可)

查看答案和解析>>

同步练习册答案