分析 最长的边长度是11,另外两边长用x,y表示,要构成三角形必须x+y≥12,列举出当y分别从11,10,9,8,7,6时,对应的三角形的个数,根据分类计数原理得到结果.
解答 解:设另外两边长为x,y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.
当y取值11时,x=1,2,3,…,11,可有11个三角形;
当y取值10时,x=2,3,…,10,可有9个三角形;
当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1,
∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.
故答案是:36.
点评 本题考查分类计数原理,以及三角形的三边关系,关键是掌握三角形的三边关系定理,注意分类讨论思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{12}{13}$ | B. | $\frac{5}{12}$ | C. | $\frac{13}{5}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com