精英家教网 > 初中数学 > 题目详情
某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.

根据以上信息,完成下列问题:
(1)当3<t≤7时,用含t的式子表示v;
(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;
(3)求该物体从P点运动到Q总路程的时所用的时间.
(1)v=2t﹣4;(2);(3)6.

试题分析:(1)设直线BC的解析式为v=kt+b,运用待定系数法就可以求出t与v的关系式;(2)由路程=速度×时间,就可以表示出物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式,(3)根据物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和求出总路程,然后将代入解析式就可以求出t值。
试题解析:(1)设直线BC的解析式为v=kt+b,由题意,得,解得:.
∴当3<n≤7时,v=2t﹣4.
(2)由题意,得.
(3)P点运动到Q点的路程为:2×3+(2+10)×(7﹣3)×=30.
∴30×=21.
,解得:t1=﹣2(舍去),t2=6.
∴该物体从P点运动到Q点总路程的时所用的时间为6秒.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,),

(1)试确定这两个函数的表达式;
(2)求出这两个函数图像的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,若△ECD的周长为2,△EBA的周长为6.

(1)矩形OABC的周长为          
(2)若A点坐标为,求线段AE所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰三角形的周长为16,若底边长为y,一腰长为x,则y与x之间的函数关系式为     ;此时自变量x的取值范围是:     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A、B两点的坐标分别为A(0,2),B(2,0)直线AB与反比例函数 的图象交与点C和点D(-1,a).

(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点P(,一3)在一次函数=2+9的图象上,则=             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
x
50
60
90
120
y
40
38
32
26
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是(     )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.

(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.

查看答案和解析>>

同步练习册答案