精英家教网 > 初中数学 > 题目详情
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=
1
6
x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=
1
6
x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
(1)由已知,得A(2,0),B(6,0),
∵抛物线y=
1
6
x2+bx+c过点A和B,
1
6
×22+2b+c=0
1
6
×62+6b+c=0

解得
b=-
4
3
c=2

则抛物线的解析式为
y=
1
6
x2-
4
3
x+2.
故C(0,2).(2分)
(说明:抛物线的大致图象要过点A、B、C,其开口方向、顶点和对称轴相对准确)(3分)

(2)如图①,抛物线对称轴l是x=4.
∵Q(8,m)在抛物线上,
∴m=2.过点Q作QK⊥x轴于点K,则K(8,0),QK=2,AK=6,
∴AQ=
AK2+QK2
=2
10
.(5分)
又∵B(6,0)与A(2,0)关于对称轴l对称,
∴PQ+PB的最小值=AQ=2
10


(3)如图②,连接EM和CM.
由已知,得EM=OC=2.
∵CE是⊙M的切线,
∴∠DEM=90°,
则∠DEM=∠DOC.
又∵∠ODC=∠EDM.
故△DEM≌△DOC.
∴OD=DE,CD=MD.
又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.
则OECM.(7分)
设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),
4k+b=0
b=2

解得
k=-
1
2
b=2

直线CM的解析式为y=-
1
2
x+2

又∵直线OE过原点O,且OECM,
∴OE的解析式为y=-
1
2
x.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1、2,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A.
(1)求此抛物线的解析式;
(2)如图1,若M(0,1),过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)如图2,抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+2交x轴于A(-1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线y=
2
3
x2
于P,Q两点.
(1)求证:∠ABP=∠ABQ;
(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h)406080100120
s/m24.27.21115.6
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连接各点;
(2)利用图象验证刹车距离s(m)与车速v(km/h)是否有如下关系:s=
1
1000
v2+
1
100
v0

(3)求当s=9m时的车速v.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.
(1)求点A的坐标:
(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;
(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设“健益”超市销售该绿色食品每天获得利润为P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出).

查看答案和解析>>

同步练习册答案