精英家教网 > 初中数学 > 题目详情
10、若f(n)为n2+1(n为正整数)的各位数字之和,如:62+1=37,则f(6)=3+7=10.记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n)),k为正整数,则f2011(8)=
11
分析:通过观察前几个函数值的规律得,fn(8)构成一个周期为3的周期性的数列,再利用数列的周期性即可解决问题.
解答:解:.82=64,64+1=65,6+5=11,∴f1(8)=f(8)=11;
112=121,121+1=122,1+2+2=5,∴f2(8)=5;
52=25,25+1=26,2+6=8,∴f3(8)=8;
82=64,64+1=65,6+5=11,∴f4(8)=11,
∴fn(8)构成一个周期为3的周期性的数列,
∴f2011(8)=f3×670+1(8)=f1(8)=11.
故答案为11.
点评:本题主要考查了归纳推理、函数的周期性,以及数列递推式,属于基础题.所谓归纳推理,就是从个别性知识推出一般性结论的推理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若f(n)为n2+1(n是任意正整数)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k是正整数,则f2010(11)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若f(n)为n2+1(n为正整数)的各位数字之和,如:62+1=37,则f(6)=3+7=10.记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n)),k为正整数,则f2011(8)=________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若f(n)为n2+1(n是任意正整数)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k是正整数,则f2010(11)=______.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省宁波市余姚中学自主招生考试数学试卷(解析版) 题型:填空题

若f(n)为n2+1(n为正整数)的各位数字之和,如:62+1=37,则f(6)=3+7=10.记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n)),k为正整数,则f2011(8)=   

查看答案和解析>>

同步练习册答案