精英家教网 > 初中数学 > 题目详情
四边形OABC是等腰梯形,OABC.在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒2个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连接AC交NP于Q,连接MQ.
(1)写出C点的坐标;
(2)若动点N运动t秒,求Q点的坐标;(用含t的式子表示)
(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围;
(4)当t取何值时,△AMQ的面积最大;
(5)当t为何值时,△AMQ为等腰三角形.
(1)C(1,2).

(2)过C作CE⊥x轴于E,则CE=2
当动点N运动t秒时,NB=t
∴点Q的横坐标为3-t
设Q点的纵坐标为yQ
由PQCE得
yQ
2
=
1+t
3

∴yQ=
2+2t
3

∴点Q(3-t,
2+2t
3
);

(3)点M以每秒2个单位运动,
∴OM=2t,AM=4-2t,
S△AMQ=
1
2
AM•PQ=
1
2
•(4-2t)•
2+2t
3

=
2
3
(2-t)(t+1)
=-
2
3
(t2-t-2)
当t=2时,M运动到A点,△AMQ不存在,
∴t≠2,
∴t的取值范围是0≤t<2;

(4)由S△AMQ=-
2
3
(t2-t-2)=-
2
3
(t-
1
2
2+
3
2

当t=
1
2
时,Smax=
3
2


(5)①若QM=QA
∵QP⊥OA,
∴MP=AP,
而MP=4-(1+t+2t)=3-3t,
即1+t=3-3t,
t=
1
2

∴当t=
1
2
时,△QMA为等腰三角形;
②若AQ=AM
AQ2=AP2+PQ2=(1+t)2+(
2+2t
3
2=
13
9
(1+t)2AQ=
13
3

AM=4-2t
13
3
(1+t)=4-2t,
t=
85-18
13
23
而0<
85-18
13
23
<2,
∴当t=
85-18
13
23
时,△QMA为等腰三角形;
③若MQ=MA
MQ2=MP2+PQ2
=(3-3t)2+(
2+2t
3
2=
85
9
t2-
154
9
t+
85
9

85
9
t2-
154
9
t+
85
9

=(4-2t)2
49
9
t2-
10
9
t-
59
9
=0
解得t=
59
49
或t=-1(舍去)
∵0<
59
49
<2,
∴当t=
59
49
时,△QMA为等腰三角形;
综上所述:当t=
1
2
,t=
85-18
13
23
或t=
59
49
△QMA都为等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=mx2+(m-3)x-3(m>0)与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.
(1)求这条抛物线的解析式;
(2)若点P(x1,b)与点Q(x2,b)在(1)中的抛物线上,且x1<x2,PQ=n.
①求4x12-2x2n+6n+3的值;
②将抛物线在PQ下方的部分沿PQ翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x轴恰好只有两个公共点时,b的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
(1)求a的值和该抛物线顶点P的坐标.
(2)求△PAB的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线经过点(-2,0)(1,0)(0,2)
(1)求二次函数的解析式;
(2)写出顶点坐标和对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)(A在B的左边),且x1+x2=4.
(1)求b的值及c的取值范围;
(2)如果AB=2,求抛物线的解析式;
(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC≌BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点O为原点,直线y=kx+b与x轴交于点A(3,0),与y轴的正半轴交于点B,tan∠OAB=
3

(1)求这直线的解析式;
(2)将△OAB绕点A顺时针旋转60°后,点B落到点C的位置,求以点C为顶点且经过点A的抛物线的解析式;
(3)设(2)中的抛物线与x轴的另一个交点为点D,与y轴的交点为E.试判断△ODE是否与△OAB相似?如果认为相似,请加以证明;如果认为不相似,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在向汶川地震灾区执行空投任务中,一架飞机在空中沿着水平方向向空投地O处上方直线飞行,飞行员在A点测得O处的俯角为30°,继续向前飞行1千米到达B处测得O处的俯角为60°.飞机继续飞行0.1千米到达E处进行空投,已知空投物资在空中下落过程中的轨迹是抛物线,若要使空投物资刚好落在O处.
(1)求飞机的飞行高度.
(2)以抛物线顶点E为坐标原点建立直角坐标系,求抛物线的解析式.(所有答案可以用根号表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表
x-1012
y10521
(1)求该二次函数的解析式;
(2)函数值y随x的增大而增大时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球到达最大高度
32
3
米,如图1,以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米,试通过计算说明,球是否会进入球门?
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图2,在另一次地面进攻中,假如守门员站在离球门中央2米远的A处防守,进攻队员在离球门中央12米的B处,以120千米/小时的球速起脚射门,射向球门的立柱C,球门的宽度CD为7.2米,而守门员防守的最远水平距离S(米)与时间t(秒)之间的函数关系式为S=10t,问守门员能否挡住这次射门?
(4)在(3)的条件下,∠EAG区域为守门员的截球区域,试估计∠EAG的最大值(精确到0.1°).

查看答案和解析>>

同步练习册答案