精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
(1)y=x2-2x-3;(2)存在点P,P点的坐标为(,?);(3)P点的坐标为(,?),四边形ABPC的面积的最大值为.

试题分析:(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;
(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;
(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.
(1)将B、C两点的坐标代入得,解得:
所以二次函数的表达式为:y=x2-2x-3
(2)存在点P,使四边形POP′C为菱形;
设P点坐标为(x,x2-2x-3),PP′交CO于E
若四边形POP′C是菱形,则有PC=PO;
连接PP′,则PE⊥CO于E,

∵C(0,-3),
∴CO=3,
又∵OE=EC,
∴OE=EC=
∴y=?
∴x2-2x-3=?
解得x1=,x2=(不合题意,舍去),
∴P点的坐标为(,?
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2-2x-3),

设直线BC的解析式为:y=kx+d,
,解得:
∴直线BC的解析式为y=x-3,
则Q点的坐标为(x,x-3);
当0=x2-2x-3,
解得:x1=-1,x2=3,
∴AO=1,AB=4,
S四边形ABPC=S△ABC+S△BPQ+S△CPQ
=AB•OC+QP•BF+QP•OF
=×4×3+(?x2+3x)×3
=?(x?)2+
当x=时,四边形ABPC的面积最大
此时P点的坐标为(,?),四边形ABPC的面积的最大值为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)B点关于y轴的对称点坐标为        
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1
(3)在(2)的条件下,A1的坐标为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个图形中,既是轴对称图形,又是中心对称图形是
A.⑴、⑵B.⑴、⑶C.⑴、⑷D.⑵、⑶

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为(  )
 
A.16cm B.18cm C.20cm D.22cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列电视台的台标中,是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为
A.11B.10C.9D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中既是中心对称图形,又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将图形按逆时针方向旋转900后的图形是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2012为止,则AP2012等于(  )
A.2 011+671B.2 012+671
C.2 013+671D.2 014+671

查看答案和解析>>

同步练习册答案