精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.

【答案】分析:(1)根据中位线的判定GH=EF=,EH=FG=,所以四边形EFGH是平行四边形.
(2)根据菱形的判定,四边都相等的四边形是菱形,只要证明EF=FG=GH=HE就可以了,这就需要AB=CD这个条件.
解答:(1)证明:∵E、F分别是AD,BD的中点,G、H分别中BC,AC的中点,
∴EF∥AB,EF=AB;GH∥AB,GH=AB.(2分)
∴EF∥GH,EF=GH.
∴四边形EFGH是平行四边形.(2分)

(2)当AB=CD时,四边形EFGH是菱形.(1分)
理由:∵E、F分别是AD,BD的中点,H,G分别是AC,BC的中点,G、F分别是BC,BD的中点,E,H分别是AD,AC的中点,
∴EF=AB,HG=AB,FG=CD,EH=CD,
又∵AB=CD,
∴EF=FG=GH=EH.
∴四边形EFGH是菱形.(3分)
点评:此题考查了三个判定:平行四边形的判定、菱形的判定、中位线的判定,牢记这几个判定,解此类问题就轻而易举了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案