【题目】“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.
(1)求该型号自行车的进价和标价分别是多少元?
(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出50辆;若每辆自行车每降价20元,每月可多售出5辆,求该型号自行车降价多少元时,每月可获利30000元?
【答案】(1)该型号自行车的进价为1000元,标价为1500元;(2)该型号自行车降价100元或200元时,每月可获利30000元.
【解析】
(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,根据利润=售价﹣进价结合按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同,即可得出关于x的一元一次方程,解之即可得出结论;
(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,根据总利润=每辆的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出结论.
解:(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,
依题意,得:8×[0.9×(1+50%)x﹣x]=7×[(1+50%)x﹣100﹣x],
解得:x=1000,
∴(1+50%)x=1500.
答:该型号自行车的进价为1000元,标价为1500元.
(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,
依题意,得:(1500﹣1000﹣y)(50+y)=30000,
整理,得:y2﹣300y+20000=0,
解得:y1=100,y2=200.
答:该型号自行车降价100元或200元时,每月可获利30000元.
科目:初中数学 来源: 题型:
【题目】问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD
操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.
(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.
拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2.
以上结论中,你认为正确的有 .(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.
(1)求该抛物线的表达式;
(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;
(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数分别与轴、轴交于点、.顶点为的抛物线经过点.
(1)求抛物线的解析式;
(2)点为第一象限抛物线上一动点.设点的横坐标为,的面积为.当为何值时,的值最大,并求的最大值;
(3)在(2)的结论下,若点在轴上,为直角三角形,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P是一个反比例函数的图象与正比例函数y=﹣2x的图象的公共点,PQ垂直于x轴,垂足Q的坐标为(2,0).
(1)求这个反比例函数的解析式;
(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)【问题发现】
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)【拓展研究】
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)【问题发现】
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com