精英家教网 > 初中数学 > 题目详情
已知:m是非负数,抛物线y=x2-2(m+1)x-(m+3)的顶点Q在直线y=-2x-2上,且和x轴交于点A、B(点A在点B的左侧).
(1)求A、B、Q三点的坐标.
(2)如果点P的坐标为(1,1).求证:PA和直线y=-2x-2垂直.
(3)点M(x,1)在抛物线上,判断∠AMB和∠BAQ的大小关系,并说明理由.
(1)设抛物线的顶点Q的坐标是(x,y),
则x=-
-2(m+1)
2
=m+1
,y=
-4(m+3)-[-2(m+1)]2
4
=-m2-3m-4;
∵点Q(m+1,-m2-3m-4)在直线y=-2x-2上,
∴-m2-3m-4=-2(m+1)-2,
解得m1=0,m2=-1;
∵m是非负数,舍去m2=-1,
∴m=0;
∵抛物线解析式为y=x2-2x-3,令y=0,
∴得x2-2x-3=0,
解得x1=-1,x2=3,
∴A(-1,0),B(3,0),Q(1,-4);

(2)如图,∵抛物线的对称轴是直线x=1,
∴P点在对称轴上,
∴PQ=|1-(-4)|=5;
把A(-1,0)代入y=-2x-2,-2x(-1)-2=0成立,
∴A点在直线y=-2x-2上;
设PQ交x轴于点D,则PQ⊥AB;
在Rt△ADQ中,AQ2=AD2+QD2=20,
在Rt△APD中,AP2=AD2+PD2=5,
∴AQ2+AP2=20+5=25=PQ2
∴△PAQ是直角三角形,∠PAQ=90°;
∴PA⊥AQ,
∴PA和直线y=-2x-2垂直;

(3)答:∠AMB=∠BAQ;
解法一:
M(x,1)在抛物线y=x2-2x-3上,
∴1=x2-2x-3,
解得x=
5

∴点M的坐标为(1+
5
,1
),PM=|1+
5
-1
|=
5

∴PA=PM=PB=
5

于是点A、M、B都在以点P为圆心,
5
为半径的圆上,如图,
∵AQ⊥AP,
∴AQ是⊙P的切线,
∴∠BAQ=∠AMB;
当x=1-
5
时,点M的坐标为(1-
5
,1
);
同理可得∠BAQ=∠AMB.(15分)
解法二;当x=1+
5
时,作ME⊥x轴于点E,如图,则点E的坐标为(1+
5
,0);
于是ME=1,EA=1+
5
+1
=2+
5

AM=
ME2+EA2
=
12+(2+
5
)2
=
10+4
5

连接BM,作BF⊥AM于F,AB=|3-(-1)|=4,
则S△ABM=
1
2
ME•AB=
1
2
AM•BF
∴1×4=
10+4
5
•BF
∴BF=
4
10+4
5

在△MBE中,∠MEB=90°,
BM=
BE2+ME2
=
(1+
5
-3)2+12
=
10-4
5

在△BFM中,∠BFM=90°,
sin∠BMF=
BF
BM
=
4
10+4
5
10-4
5
=
4
10-4
5
10+4
5
=
2
5

在△DAQ中,∠ADQ=90°,
∵sin∠DAQ=
DQ
AQ
=
2
5

∴sin∠BMF=sin∠DAQ
而∠BMF、∠DAQ都是锐角,
∴∠BMF=∠DAQ,即∠AMB=∠BAQ;
当x=1-
5
时,同解法一.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=2,AD=4,以AB的垂直平分线为x轴,AB所在的直线为y轴,建立如图所示的平面直角坐标系.
(1)求点的坐标:A______,B______,C______,______,AD的中点E______;
(2)求以E为顶点,对称轴平行于y轴,并且经过点B,C的抛物线的解析式;
(3)求对角线BD与上述抛物线除点B以外的另一交点P的坐标;
(4)△PEB的面积S△PEB与△PBC的面积S△PBC具有怎样的关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线m:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在左),与y轴交于点C,顶点为M,抛物线上部分点的横坐标与对应的纵坐标如下表:
x-2023
y5-3-30
(1)根据表中的各对对应值,请写出三条与上述抛物线m有关(不能直接出现表中各对对应值)的不同类型的正确结论;
(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;
(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+2x-3与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的顶点坐标;
(2)设直线y=x+3与y轴的交点是D,在线段AD上任意取一点E(不与A、D重合),经过A、B、E三点的圆交直线AC于点F,试判断△BEF的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰梯形的周长为60,底角为30°,腰长为x,面积为y,试写出y与x的函数表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一位篮球运动员跳起投篮,球沿抛物线y=-
1
5
x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

查看答案和解析>>

同步练习册答案