½â£º£¨1£©¡ßÅ×ÎïÏߵĶԳÆÖáΪx=-
£¬¾¹ýµãA£¨3£¬0£©£¬
¡à
£¬½âµÃ
£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-
x
2-x+6£»
£¨2£©¡ßy=-
x
2-x+6£¬
¡àx=0ʱ£¬y=6£¬¼´Cµã×ø±êΪ£¨0£¬6£©£¬
¡àµ±y=6ʱ£¬-
x
2-x+6=6£¬
½âµÃx=0»ò-3£¬
¡àDµã×ø±êΪ£¨-3£¬6£©£¬DC=3£®
Èçͼ£¬¹ýµãE×÷EG¡ÍyÖáÓÚµãG£¬ÔòEG¡ÎDC£¬
¡à¡÷OEG¡×¡÷ODC£¬
¡à
=
=
=
£¬
¡àEG=
DC=1£¬OG=
OC=2£¬
¡àEµã×ø±êΪ£¨-1£¬2£©£®
½«Eµã×ø±ê´úÈëy=
x+m£¬
µÃ2=-
+m£¬
½âµÃm=
£»
£¨3£©ÈôMÊÇÖ±ÏßEFÉÏÒ»¶¯µã£¬ÔÚxÖáÉÏ·½´æÔÚµãN£¬Ê¹ÒÔO¡¢F¡¢M¡¢NΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ®
·ÖÁ½ÖÖÇé¿ö£º
¢ÙÈçͼ£¬OFΪÁâÐεıßʱ£¬Èç¹ûOF=FM
1=M
1N
1=N
1O=
£¬
ÑÓ³¤M
1N
1½»xÖáÓÚµãG
1£¬ÔòM
1N
1¡ÍxÖᣮ
¡ßµãM
1ÔÚÖ±Ïßy=
x+
ÉÏ£¬
¡àÉèµãM
1µÄ×ø±êΪ£¨a£¬
a+
£©£¨a£¾0£©£¬ÔòµãN
1µÄ×ø±êΪ£¨a£¬
a£©£¬
ÔÚRt¡÷OG
1N
1ÖУ¬OG
12+G
1N
12=ON
12£¬
¼´£ºa
2+£¨
a£©
2=£¨
£©
2£¬
ÕûÀíµÃ£ºa
2=5£¬
¡ßa£¾0£¬
¡àa=
£¬
¡àµãN
1µÄ×ø±êΪ£¨
£¬
£©£»
ͬÀí£¬ÇóµÃµãM
2µÄ×ø±êΪ£¨-2£¬
£©£¨a£¾0£©£¬ÔòµãN
2µÄ×ø±êΪ£¨-2£¬4£©£»
¢ÚÈçͼ£¬OFΪÁâÐεĶԽÇÏßʱ£¬Á¬½ÓM
3N
3£¬½»OFÓÚµãP£¬ÔòM
3N
3ÓëOF»¥Ïഹֱƽ·Ö£¬
¡àOP=
OF=
£¬
¡àµ±y=
ʱ£¬
x+
=
£¬
½âµÃ£ºx=-
£¬
¡àµãM
3µÄ×ø±êΪ£¨-
£¬
£©£¬
¡àµãN
3µÄ×ø±êΪ£¨
£¬
£©£®
×ÛÉÏËùÊö£¬xÖáÉÏ·½µÄµãNÓÐ3¸ö£¬·Ö±ðΪN
1£¨
£¬
£©£¬N
2£¨-2£¬4£©£¬N
3£¨
£¬
£©£®
·ÖÎö£º£¨1£©¸ù¾ÝÅ×ÎïÏ߶ԳÆÖáµÃµ½¹ØÓÚa¡¢bµÄÒ»¸ö·½³Ì£¬ÔٰѵãAµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ£¬È»ºó½â·½³Ì×éÇó³öa¡¢bµÄÖµ£¬¼´¿ÉµÃ½â£»
£¨2£©ÏÈÇó³öÅ×ÎïÏßy=-
x
2-x+6ÓëyÖá½»µãCµÄ×ø±êΪ£¨0£¬6£©£¬½«y=6´úÈ룬Çó³öxµÄÖµ£¬µÃµ½Dµã×ø±ê¼°DC=3£¬ÔÙ¹ýµãE×÷EG¡ÍyÖáÓÚµãG£¬ÓÉEG¡ÎDC£¬µÃµ½¡÷OEG¡×¡÷ODC£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýµÃ³ö
=
=
=
£¬Çó³öEG£¬OGµÄÖµ£¬µÃ³öEµã×ø±ê£¬È»ºó½«Eµã×ø±ê´úÈëy=
x+m£¬¼´¿ÉÇó³ömµÄÖµ£»
£¨3£©·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º¢ÙOFΪÁâÐεıßʱ£¬ÑÓ³¤M
1N
1½»xÖáÓÚµãG
1£¬ÔòM
1N
1¡ÍxÖᣮÉèµãM
1µÄ×ø±êΪ£¨a£¬
a+
£©£¬ÔòµãN
1µÄ×ø±êΪ£¨a£¬
a£©£¬ÔÚRt¡÷OG
1N
1ÖУ¬ÔËÓù´¹É¶¨ÀíµÃ³öOG
12+G
1N
12=ON
12£¬Áгö¹ØÓÚaµÄ·½³Ì£¬½â·½³Ì¼´¿É£¬Í¬ÀíÇó³öµãN
2µÄ×ø±ê£»¢ÚOFΪÁâÐεĶԽÇÏßʱ£¬Á¬½ÓM
3N
3£¬½»OFÓÚµãP£¬¸ù¾ÝÁâÐεÄÐÔÖÊ¿ÉÖªM
3N
3ÓëOF»¥Ïഹֱƽ·Ö£¬ÔòOP=
OF=
£¬½«y=
´úÈëy=
x+
£¬Çó³öxµÄÖµ£¬½ø¶øµÃµ½µãN
3µÄ×ø±ê£®
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢ÁâÐεÄÐÔÖÊÒÔ¼°¹´¹É¶¨Àí£®´ËÌâÄѶȽϴó£¬×¢ÒâÕÆÎÕ·½³Ì˼Ïë¡¢·ÖÀàÌÖÂÛ˼ÏëÓëÊýÐνáºÏ˼ÏëµÄÓ¦Óã®