精英家教网 > 初中数学 > 题目详情
已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.求证:
(1)BF=AC;
(2)CE=
12
BF.
分析:(1)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;
(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根据ASA证出△AEB≌△CEB,推出AE=CE即可.
解答:(1)证明:∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°-45°=45°=∠DBC,
∴BD=DC,
在△BDF和△CDA中
∠BDF=∠CDA
∠A=∠DFB
BD=DC

∴△BDF≌△CDA(AAS),
∴BF=AC;

(2)证明:∵BE⊥AC,
∴∠AEB=∠CEB,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
在△AEB和△CEB中
∠AEB=∠CEB
BE=BE
∠ABE=∠CBE

∴△AEB≌△CEB(ASA),
∴AE=CE,
即CE=
1
2
AC,
∵由(1)知AC=BF,
∴CE=
1
2
BF.
点评:本题考查了三角形的内角和定理,等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是推出△BDF≌△CDA和△AEB≌△CEB,题目综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图△ABC中,AD为△ABC的角平分线,求证:AB•DC=AC•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•河北)已知:如图△ABC中,∠A的平分线AD交BC于D,⊙O过点A,且与BC相切于D,与AB、AC分别相交于E、F,AD与EF相交于G.
(1)求证:AF•FC=GF•DC;
(2)已知AC=6cm,DC=2cm,求FC、GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC中,∠ACB=90°,D是AC上任意一点,DE⊥AB于E,M,N分别是BD,CE的中点,求证:MN⊥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求证:∠ACD=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,D、E、F分别是三角形三边中点,△ABC的周长为30,面积为48,则△DEF的周长为
15
15
,面积为
12
12

查看答案和解析>>

同步练习册答案