精英家教网 > 初中数学 > 题目详情
如图所示,已知O为∠A和∠C的平分线的交点,OE⊥AC于E.若OE=2,则O到AB与O到CD的距离之和=
4
4
分析:首先过点O作OM⊥AB于点M,作ON⊥CD于点N,由O为∠A和∠C的平分线的交点,OE⊥AC,根据角平分线的性质,可得OM=OE=2,ON=OE=2,继而求得答案.
解答:解:过点O作OM⊥AB于点M,作ON⊥CD于点N,
∵O为∠A和∠C的平分线的交点,OE⊥AC,
∴OM=OE=2,ON=OE=2,
∴O到AB与O到CD的距离之和=2+2=4.
故答案为:4.
点评:此题考查了角平分线的性质.此题难度不大,注意辅助线的作法,注意掌握角平分线的定理的应用是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知D为边AC的中点,CE垂直于BD的延长线于点E,CE=2cm,S△ABC=8cm2,则线段BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AE为⊙O的直径,AD为△ABC的BC边上的高.
(1)求证:∠BAE=∠DAC;
(2)若AB=10,AD=6,CD=2
3
,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为⊙O的直径,点P为OA上一点,弦MN过点P,且AP=2,OP=3,MP=2
2
,若OQ⊥MN于点Q,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

一圆柱形器皿在点光源P下的投影如图所示,已知AD为该器皿底面圆的直径,且AD=3,CD为该器皿的高,CD=4,CP′=1,点D在点P下的投影刚好位于器皿底与器皿壁的交界处,即点B处,点A在点P下的投影为A′,求点A′到CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

在数轴上表示a,0,1,b四个数的点如图所示,已知O为AB的中点,求a+b+
ab
+a+1的值.

查看答案和解析>>

同步练习册答案