精英家教网 > 初中数学 > 题目详情
(1999•山西)如图,AD是△ABC外角∠EAC的平分线AD与三角形的外接圆交于点D,AC、BD相交于点P.
求证:(1)△DBC为等腰三角形;
(2)AB:BD=PB:PC.

【答案】分析:(1)欲证△DBC为等腰三角形,需证∠DCB=∠DBC,根据圆周角定理可证∠DAC=∠DBC,根据圆内接四边形的性质可证∠EAD=∠DCB,又已知∠EAD=∠DAC,即∠DCB=∠DBC得证.
(2)根据相似三角形的判定,由∠BAP=∠CDP,∠APB=∠DPC,可证△ABP∽△DCP,得到AB:DC=PB:PC,又由(1)知BD=DC可证AB:BD=PB:PC.
解答:证明:(1)∵AD是∠EAC的平分线,
∴∠EAD=∠DAC,(1分)
∵∠EAD是圆内接四边形ABCD的外角,
∴∠EAD=∠DCB(圆内接四边形外角等于内对角),(2分)
又∵∠DAC=∠DBC,
∴∠DCB=∠DBC,
∴△DBC为等腰三角形.(3分)

(2)在△ABP和△DCP中,
∵∠BAP=∠CDP,∠APB=∠DPC,
∴△ABP∽△DCP,(4分)
∴AB:DC=PB:PC,(5分)
∵△DBC为等腰三角形,
∴BD=DC,
∴AB:BD=PB:PC.(6分)
点评:本题考查了圆周角定理,内接四边形的性质,相似三角形的判定和性质,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1999•山西)如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(1999•山西)如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•山西)如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:1999年山西省中考数学试卷(解析版) 题型:解答题

(1999•山西)如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

同步练习册答案