精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.
分析:(1)首先令抛物线的值y=0,可得出一个关于x的方程,那么x1•x2=a2>0,因此x1、x2同号,然后可根据抛物线与x轴有两个坐标不同的交点即方程的△>0以及x1+x2的值来得出点A、B均在原点O左侧.
(2)可先根据一元二次方程根与系数的关系用a表示出OA、OB的长,然后用a表示出OC的长,然后根据题中给出的等量关系:OA+OB=OC-2求出a的值.
解答:解:(1)∵抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1≠x2
∴△=(1-2a)2-4a2>0.a<
1
4

又∵a≠0,
∴x1•x2=a2>0,
即x1、x2必同号.
而x1+x2=-(1-2a)=2a-1<
1
2
-1=-
1
2
<0,
∴x1、x2必同为负数,
∴点A(x1,0),B(x2,0)都在原点的左侧.

(2)∵x1、x2同为负数,
∴由OA+OB=OC-2,
得-x1-x2=a2-2
∴1-2a=a2-2,
∴a2+2a-3=0.
∴a1=1,a2=-3,
∵a<
1
4
,且a≠0,
∴a的值为-3.
点评:本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案