·ÖÎö£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©¸ù¾ÝÒÑÖªµÃ³ö¡÷OPQµÄ¸ß£¬½ø¶øÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬µÃ³öÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬µÃ³ö¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ»
£¨4£©Ê×ÏÈÇó³öÅ×ÎïÏ߶ԳÆÖáÒÔ¼°OBÖ±Ïß½âÎöʽºÍPMµÄ½âÎöʽ£¬µÃ³ö
£¨1-t£©¡Á
=3-t-2t£¬ºã³ÉÁ¢£¬¼´0¡Üt¡Ü2ʱ£¬P£¬M£¬Q×ÜÔÚÒ»ÌõÖ±ÏßÉÏ£¬ÔÙÀûÓÃ2£¼t¡Ü3ʱ£¬Çó³ötµÄÖµ£¬¸ù¾ÝtµÄÈ¡Öµ·¶Î§µÃ³ö´ð°¸£®
½â´ð£º½â£º£¨1£©ÉèËùÇóÅ×ÎïÏߵĽâÎöʽΪy=ax
2+bx+c£¬°ÑA£¨6£¬0£©£¬B£¨3£¬
£©£¬C£¨1£¬
£©Èýµã×ø±ê´úÈëµÃ£º
£¬
½âµÃ£º
£¬
¼´ËùÇóÅ×ÎïÏß½âÎöʽΪ£ºy=-
x
2+
x+
£»
£¨2£©Èçͼ1£¬ÒÀ¾ÝÌâÒâµÃ³ö£ºOC=CB=2£¬¡ÏCOA=60¡ã£¬
¡àµ±¶¯µãQÔ˶¯µ½OC±ßʱ£¬OQ=4-t£¬
¡à¡÷OPQµÄ¸ßΪ£ºOQ¡Ásin60¡ã=£¨4-t£©¡Á
£¬
ÓÖ¡ßOP=2t£¬
¡àS=
¡Á2t¡Á£¨4-t£©¡Á
=-
£¨t
2-4t£©£¨2¡Üt¡Ü3£©£»
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬
µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¬OQ=
£¬
PQ=
=
£¬
¡ß¡ÏPOQ£¼¡ÏPOC=60¡ã£¬
¡àÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOPQ=90¡ã£¬Èçͼ2£¬ÔòOP
2+PQ
2=QO
2£¬¼´4t
2+3+£¨3t-3£©
2=3+£¨3-t£©
2£¬
½âµÃ£ºt
1=1£¬t
2=0£¨ÉáÈ¥£©£¬
Èô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOQP=90¡ã£¬Èçͼ£¬3£¬ÔòOQ
2+PQ
2=PO
2£¬¼´£¨3-t£©
2+6+£¨3t-3£©
2=4t
2£¬
½âµÃ£ºt=2£¬
µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¾4£¬
¡ÏPOQ=¡ÏCOP=60¡ã£¬
OQ£¼OC=2£¬
¹Ê¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ¬
×ÛÉÏËùÊö£¬µ±t=1»òt=2ʱ£¬¡÷OPQΪֱ½ÇÈý½ÇÐΣ»
£¨4£©ÓÉ£¨1£©¿ÉÖª£¬Å×ÎïÏßy=-
x
2+
x+
=-
£¨x-2£©
2+
£¬
Æä¶Ô³ÆÖáΪx=2£¬
ÓÖ¡ßOBµÄÖ±Ïß·½³ÌΪy=
x£¬
¡àÅ×ÎïÏ߶ԳÆÖáÓëOB½»µãΪM£¨2£¬
£©£¬
ÓÖ¡ßP£¨2t£¬0£©
Éè¹ýP£¬MµÄÖ±Ïß½âÎöʽΪ£ºy=kx+b£¬
¡à
£¬
½âµÃ£º
£¬
¼´Ö±ÏßPMµÄ½âÎöʽΪ£ºy=
x-
£¬
¼´
£¨1-t£©y=x-2t£¬
ÓÖ0¡Üt¡Ü2ʱ£¬Q£¨3-t£¬
£©£¬´úÈëÉÏʽ£¬µÃ£º
£¨1-t£©¡Á
=3-t-2t£¬ºã³ÉÁ¢£¬
¼´0¡Üt¡Ü2ʱ£¬P£¬M£¬Q×ÜÔÚÒ»ÌõÖ±ÏßÉÏ£¬
¼´MÔÚÖ±ÏßPQÉÏ£»
µ±2£¼t¡Ü3ʱ£¬OQ=4-t£¬¡ÏQOP=60¡ã£¬
¡àQ£¨
£¬
£©£¬
´úÈëÉÏʽµÃ£º
¡Á
£¨1-t£©=
-2t£¬
½âµÃ£ºt=2»òt=
£¨¾ù²»ºÏÌâÒ⣬ÉáÈ¥£©£®
¡à×ÛÉÏËùÊö£¬¿ÉÖª¹ýµãA¡¢B¡¢CÈýµãµÄÅ×ÎïÏߵĶԳÆÖáOBºÍPQÄܹ»½»ÓÚÒ»µã£¬´Ëʱ0¡Üt¡Ü2£®